
UIPro: Unleashing Superior Interaction Capability For GUI Agents

Supplementary Material

7. Details of UIPro Datasets

We list the data sources used in the 20.6M GUI understand-
ing dataset (Sec. 3.2.1) in Tab. 16 and those in the unified
GUI agent task (Sec. 3.2.2) in Tab. 18.

GUI understanding data:
Common Crawl: Following [22], we select the pages from
the top-200 domains in Common Crawl and design an in-
house web crawler that interacts with elements rendered
on the web page and collects interaction trajectories. Sub-
sequently, we use the AutoGUI [22] pipeline to generate
functionality grounding and referring tasks.
Android Emulator: We set up virtual Android phones on
Android Emulator and collect interaction trajectories on
GUIs, including the home page, drop-down panel, settings
page, and Apps drawer. Likewise, we use the AutoGUI [22]
pipeline to generate functionality grounding and referring
tasks.
RICO [13]: We use the element annotations prepared by
SeeClick [12] and generate element grounding and referring
tasks using RICO element descriptions as referring expres-
sions.
MobileViews [17]: This dataset provides massive GUIs
recorded on 20k mobile apps.We generate text localization,
OCR, intent grounding, and widget listing tasks using the
GUI metadata of this dataset.
WAE [9]: This dataset also provides large-scale GUI meta-
data, which are originally used for assisting GUI design.
Similar to MobileViews, we generate grounding and refer-
ring tasks from GUI metadata. As this data source provides
accurate element properties. We also generate tasks specific
to iconic elements.
WebUI [48]: This dataset also provides large-scale GUI
metadata. We generate GUI understanding tasks as we do
for WAE.
MultiUI [30]: This dataset provides massive GUI-related
Q&A tasks, which are cleaned and incorporated into our
dataset to enhance the model’s capability of understanding
various aspects of GUIs.
GUIEnv [10]: This dataset contains only text localization
and OCR tasks, which are both cleaned and incorporated
into our dataset
SeeClick-Web [12]: This dataset contains only text localiza-
tion and OCR tasks in web scenarios, which are cleaned and
incorporated into our dataset.
OmniAct [21]: This dataset contains element annotations
on web and desktop scenarios, which are used to generate
intent grounding tasks.
MOTIF [7]: This dataset contains action trajectories col-

lected on mobile apps. We convert the actions into intent-
grounding tasks.

GUI agent task data:
AITW [38]: AITW is released by Google Research, provid-
ing massive Android app interaction trajectories. We use the
train/test splits provided by SeeClick [12] and incorporate
the cleaned training samples into our unified agent task data.
AITZ [57]: This dataset cleans a subset of AITW [38] and
uses a proprietary LLM to generate high-quality reasoning
and action annotations. Given a step in AITZ, We generate a
sample with a reasoning process and one without reasoning
to leverage the GUI knowledge entailed in the reasoning
content.
AMEX [8]: This dataset expands the General split of the
AITW [38] to provide more detailed annotations for each
interaction step. The quality of this dataset is high, so we
directly reformat their samples and incorporate them into
our unified dataset.
AndroidControl [23]: This dataset boasts massive, high-
quality interaction trajectories collected over one year by
Google Research. As this dataset has not provided the bound-
ing box of target elements, we find the smallest box enclosing
target points using the GUI metadata provided.
GUIOdyssey [31]: This dataset provides cross-app interac-
tion trajectories, which can diversify our unified dataset.
WebLINX [32]: This dataset provides dialogue-format
human-agent interaction trajectories. We remove all non-
action steps and use the action-related steps to generate ac-
tion prediction samples.
OmniAct-Desktop [21]: This dataset is used in the experi-
ments to assess the transferability of UIPro. As each action
plan provided in OmniAct-Desktop is associated with only
the starting screenshot, we extract the first action in the plan
to generate training and test data.

8. Implementation Details of UIPro

8.1. Training Parameters

The hyper-parameters of training UIPro-SliME and UIPro-
Qwen2VL are shown in Tab. 9 and Tab. 10. All experiments
are conducted with 8 L20 GPUs, each with 48GB of memory.
Pre-training UIPro with the 20.6M GUI understanding data
for one epoch took approximately 96 hours on the 8 L20
GPUs; Fine-tuning UIPro with the 380k unified agent task
data for the mobile embodiment took approximately 9 hours;
Fine-tuning UIPro with the 144.9k unified agent task data
for the web embodiment took approximately 3 hours.



Table 9. The training hyper-parameters used for fine-tuning UIPro-
SLiME.

Hyper-Parameter Value

Epoch 1
Global batch size 128

#GPUs 8
Learning rate for all stages 3e-5

weight decay 0.0
ADAM Beta2 0.95
Warm-up ratio 0.03
LR scheduler Cosine

Model max length 2048
Frozen module ViT

DeepSpeed ZeRO-2
Data type BFloat16

Table 10. The training hyper-parameters used for fine-tuning UIPro-
Qwen2VL.

Hyper-Parameter Value

Epoch 1
Global batch size 128

#GPUs 8
Learning rate for all stages 3e-5

LoRA Rank 128
LoRA Alpha 256
weight decay 0.0
ADAM Beta2 0.95
Warm-up ratio 0.03
LR scheduler Cosine

Model max length 4096
Frozen module ViT

DeepSpeed ZeRO-2
Data type BFloat16

8.2. Unified Action Spaces
We unify the heterogeneous action definitions from the used
data sources and generate three unified action spaces for
mobile, web, and desktop scenarios, respectively. Please
refer to Tab. 11, Tab. 12, and Tab. 13.

Inconsistency mainly exhibits in swipe, scroll, drag/move,
and status (used to signal task completion/impossibility),
with substantially different parameter definitions on
AITW [38], AndroidControl [23], GUIOdyssey [31], and
Mind2Web [14].

8.3. Denoising Procedure
We inspect the used data sources listed in Tab. 16 and Tab. 18,
categorize typical noise in the raw GUI data, and develop
the following denoising procedure:

1. Checking the validity of element bounding box
coordinates. An element will be discarded if it is outside of

the GUI screenshot or its area is zero.
2. Removing oversized elements. As the grounding and

referring tasks in our dataset focus on elements that are leaf
nodes in the GUI layout hierarchy, we also remove oversized
elements that are likely parent nodes. Localizing or referring
to these oversized elements probably leads to ambiguity, as
the element center often falls in leaf node elements. We
remove elements whose area ratios are greater than 0.65.
We choose 0.65 as this threshold can achieve an empirically
good tradeoff between retaining meaningful elements and
removing as many noisy ones as possible.

3. Removing extremely tiny elements. According to
Google Accessibility Help3, an element should be large
enough for reliable interaction, with a width and height of at
least 48dp. Considering that low-density GUI screenshots
probably exist in the used GUI data sources, the smallest
size of an element is limited to 48 × (60/160) = 18pixels.
We remove elements whose smaller size is less than this
threshold.

4. Removing blank elements. It is a common case
that the GUI rendering is incomplete due to massive con-
tent loading and rendering program bugs. An example is
the Mind2Web dataset [14], which contains many incom-
plete web page HTML scripts. Generating GUI interaction
samples from these blank elements is likely to confuse the
trained models. To remove these blank elements, we cal-
culate the color deviation using np.std for the element
region and remove elements whose color deviation is less
than 5 (also an empirical value to achieve a good tradeoff
between retaining meaningful elements and removing noisy
ones as many as possible).

5. Removing duplicate boxes. It is also a common case
that multiple elements are in the same bounding box. For
example, an image button may contain an image element
and a button element. We retain only one of the duplicate
elements to ensure the dataset’s diversity.

6. Removing invisible textual elements. Invisible el-
ements, e.g., a hidden menu, will confuse the model. To
remove these elements, we utilize pytesseract (an effi-
cient OCR toll) to detect the texts for textual elements and
remove the elements for which the similarity score between
the OCR outputs and their text properties is less than 22.

7. Denoising for agent task data. Apart from the noise
in GUI grounding data, the used GUI agent task data also
contains noise. We list the most occurring noise type in the
GUI agent task dataset: 1) AITZ [57]: the action mentioned
in the agent’s reasoning content does not match the actually
taken action. 2) AITW [38]: Apart from the noise recognized
by other works [8, 57], we also find that in some cases,
one action is repeated multiple times, leading to redundant
training samples. 3) AndroidControl [8]: No bounding box
associated with the interacted element. 4) Mind2Web [14]:

3https://support.google.com/accessibility/android/answer/7101858?hl=en



Action Name Usage Definition

click Click on an element. The target x and target y denote the x and y coordinates of the target. {”action type”: ”click”, ”target”: ({target x},{target y})}
long press long-press an element for a duration. {”action type”: ”long Press”, ”target”: ({target x},{target y})}

swipe
Simulate a real swipe action to change viewports. The start x and start y denote the x and y
coordinates of the swipe starting point. The direction has four options: up, down, left, and right.
The distance has three options: short, medium, and long.

{”action type”: ”swipe”, ”start”: ({start x},{start y}),
”direction”: ”{direction}”, ”distance”: ”{distance}”}

input text Type texts in to an input box. {”action type”: ”input text”, ”text”: ”{text}”}

drag
Press a finger on a target, move the finger to a destination,
and finally list the finger. {”action type”: ”drag”, ”start”: (x1,y1), ”end”: (x2,y2)}

enter
This action inherits from AndroidControl and Android World.
It simulates pressing Enter on a keyboard. {”action type”: ”enter”}

navigate back Navigate to the previous GUI. {”action type”: ”navigate back”}
navigate home Navigate to the home page on the mobile phone. {”action type”: ”navigate home”}
navigate recent Open the window showing recently used apps. {”action type”: ”navigate recent”}

wait Wait for content loading. This is also inherited from AndroidControl and Android World. {”action type”: ”wait”}

status
Signal the termination of a task and return an answer if required.
The goal status has two options: ”successful” denoting task completion and ”infeasible”
denoting an impossible task. The answer is used to contain the answer generated by the model.

{”action type”: ”status”, ”goal status”: ”{goal status}”, ”answer”: ”{answer}”}

Table 11. The unified action space for mobile scenarios.

Action Name Usage Definition

click Click on an element. The target x and target y denote the x and y coordinates of the target. {”action type”: ”click”, ”target”: ({target x},{target y})}

scroll
Simulate a scroll action to change viewports. The direction has four options: up, down, left, and right.
The distance has three options: short, medium, and long. {”action type”: ”scroll”, ”direction”: ”{direction}”, ”distance”: ”{distance}”}

input text Type texts into an input box. {”action type”: ”input text”, ”text”: ”{text}”}

drag
Press a finger on a target, move the finger to a destination,
and finally lift the finger. {”action type”: ”drag”, ”start”: (x1,y1), ”end”: (x2,y2)}

move to This action simulates moving the mouse and can be used to move the pointer to a location or hover on an element. {”action type”: ”move to”, ”start”: (x1,y1), ”end”: (x2,y2)}
navigate back Navigate to the previous webpage. {”action type”: ”navigate back”}

navigate forward Undo navigate back. {”action type”: ”navigate home”}
go to Go to a certain URL. {”action type”: ”go to”, ”url”: ”(a certain url)”}

search google This action simulates directly typing a search query in the address bar and pressing Enter. {”action type”: ”search google”, ”query”: ”(search query)”}

press key
This action simulates pressing a key down and then releasing it.
Example keys include ’enter’, ’shift’, arrow keys, or function keys. {”action type”: ”press key”, ”key”: ”(key name)”}

hotkey Press a key combination. The key comb examples include Ctrl-S or Ctrl-Shift-1 with multiple keys combined with ’-’. {”action type”: ”hotkey”, ”key comb”: ”(key combination)”}
new tab Create a new tab in the web browser {”action type”: ”new tab”}

switch tab Switch to a tab specified by its index. {”action type”: ”switch tab”, ”tab”: ”(tab index)”}
close tab Close the focused tab. {”action type”: ”close tab”}

status Signal the termination of a task and return an answer if required. The usage of its parameters is the same as mobile. {”action type”: ”status”, ”goal status”: ”{goal status}”, ”answer”: ”{answer}”}

Table 12. The unified action space for web scenarios.

blank interacted elements.
Our denoising procedure is designed for the data sources

used. Nevertheless, one can integrate more rules and adjust
the empirical thresholds to extend our procedure to more
data sources.

The noise ratios for several data sources are listed in
Tab. 17. We find that the noise ratios are unignorable, with
29.0% of WAE [9] elements being noisy.

9. Additional Experiments

9.1. Transfer to Desktop Environments

Transfer UIPro to OmniAct-Desktop Tasks Although
UIPro is primarily pre-trained with web and mobile data, we
test whether this pre-training can facilitate agent task fine-
tuning on out-of-distribution desktop environments, such as
Windows and Linux. We fine-tune the pre-trained UIPro
with the training split of OmniAct-desktop [21] and evaluate
it on the test split. Tab. 14 shows that increasing the pre-
training data size consistently improves step SR, with UIPro
even surpassing OS-ATLAS[49], which is pre-trained with
extensive desktop-domain data and fine-tuned with the same
OmniAct data.

9.2. Detailed Performance on ScreenSpot
The grounding accuracy on the three platform splits of
ScreenSpot [12] is shown in Tab. 15. The results show that
UIPro obtains the highest grounding accuracy and excels at
icon grounding.



Action Name Usage Definition

click Click on an element. The target x and target y denote the x and y coordinates of the target. {”action type”: ”click”, ”target”: ({target x},{target y})}
right click Right-click on an element. {”action type”: ”right click”, ”target”: ({target x},{target y})}

double click Double-click on an element. {”action type”: ”double click”, ”target”: ({target x},{target y})}

scroll
Simulate a scroll action to change viewports. The direction has four options: up, down, left, and right.
The distance has three options: short, medium, and long. {”action type”: ”scroll”, ”direction”: ”{direction}”, ”distance”: ”{distance}”}

input text Type texts in to an input box. {”action type”: ”input text”, ”text”: ”{text}”}

drag
Press a finger on a target, move the finger to a destination,
and finnaly list the finger. {”action type”: ”drag”, ”start”: (x1,y1), ”end”: (x2,y2)}

move to This action simulates moving the mouse and can be used to move the pointer to a location or hover on an element. {”action type”: ”move to”, ”start”: (x1,y1), ”end”: (x2,y2)}

press key
This action simulates pressing a key down and then releasing it.
Example keys include ’enter’, ’shift’, arrow keys, or function keys. {”action type”: ”press key”, ”key”: ”(key name)”}

hotkey Press a key combination. The key comb examples include Ctrl-S or Ctrl-Shift-1 with multiple keys combined with ’-’. {”action type”: ”hotkey”, ”key comb”: ”(key combination)”}
status Signal the termination of a task and return an answer if required. The usage of its parameters is the same as mobile. {”action type”: ”status”, ”goal status”: ”{goal status}”, ”answer”: ”{answer}”}

Table 13. The unified action space for desktop scenarios.

VisualWebBench Action Gnd.

Anno. Type: Action intent

RE: View the content in Chinese

Target: (X=560,Y=640)

FuncPred

Anno. Type: Elem. Functionality

Query: This element adjusts the size of the 
content

Target: (X=440,Y=170)

ScreenSpot (v2)

Anno. Type: Brief Description

RE: screenshot option

Target: (X=180,Y=100)

VisualWebBench Element Gnd.

Anno. Type: Text Grounding

RE: Help Center & Safety

Target: (X=600,Y=200)

MOTIF

Anno. Type: Action Intent

RE: press the Your channel 
icon

Target: (X=500,Y=500)

RefExp

Anno. Type: Action Intent

RE: click on the share icon 
at the corner

Target: (X=850,Y=850)

MOTIF

Anno. Type: Action Intent

RE: press the Your channel 
icon

Target: (X=500,Y=500)

Figure 7. Examples of the grounding tasks provided by the used GUI element grounding benchmarks in Sec.4.3.



Methods Size Step SR

DetAct (GPT-4V) [21] - 17.0
UGround (GPT-4o) [18] - 33.4

OS-ATLAS-Base w/ SFT [49] 7B 74.6
UIPro-Qwen2VL 7B 77.9

MiniCPM-GUI [10] 3B 11.3
UIPro-SLiME w/o GUI und. PT 3B 15.4

UIPro-SLiME w/ 5.9M GUI und. PT 3B 18.9
UIPro-SLiME w/ 20.6M GUI und. PT 3B 25.1

Table 14. Evaluating UIPro on the desktop software tasks of
OmniAct [21]. Although training samples from desktop domains
are scarce in our collected data, the two UIPro models still perform
well. Pre-training UIPro-SLiME with more of our GUI under-
standing data before fine-tuning it on the downstream OmniAct
tasks leads to better step SR. OS-ATLAS-Base w/ SFT means OS-
ATLAS-Base [49] is finetuned with the OmniAct training split.



Methods Model Size Mobile Desktop Web Avg.Text Icon Text Icon Text Icon

GPT-4o - 24.9 24.0 15.5 21.4 12.2 7.3 17.8
Qwen2-VL [46] 7B 78.0 62.9 64.4 50.0 72.2 61.2 66.4
CogAgent [20] 18B 68.5 21.0 73.7 17.9 70.4 33.5 49.8
SeeClick [12] 10B 77.3 52.4 68.6 30.7 59.1 30.6 53.4
UGround [18] 7B 82.8 61.6 84.0 65.1 81.3 71.8 74.8

OS-ATLAS-Base [49] 7B 93.0 72.9 91.8 62.9 90.9 74.3 82.5
UIPro-Qwen2VL (ours) 7B 93.1 74.7 89.2 70.0 85.7 74.8 82.7

UIPro-SLiME (ours) 3B 84.3 45.4 70.0 42.7 76.8 29.3 60.8

Table 15. Grounding accuracy on the subsets of the ScreenSpot benchmark [12]. UIPro leads in the overall performance, and achieves the
highest accuracy on icon grounding tasks.

GUI Source #Images #Tasks Text Icon Other Element Functionality Intent Gnd. Elem. Class. Widget Listing QA Captioning

Gnd. Ref. Gnd. Ref. Gnd. Ref. Gnd. Ref.

Common Crawl4† 35.8k 1.3M 134.2k 157.7k - - - - 314.5k 314.5k 314.5k - 48.1k - -
Android Emulator† 29.6k 629.5k 127.5k 198.1k - - - - 38.4k 38.4k 189.6k - 37.7k - -

RICO [13]* 34.4k 1.1M - - - - 939.5k 101.4k - - - - - - 47.2k
MobileViews [17]† 64.6k 1.6M 497.2k 544.3k - - - - - - 495.3k - 64.0k - -

WAE [9]† 372.1k 7.5M 2.1M 2.4M 241.7k 313.5k - - - - 2.1M - 345.5k - -
AndroidControl [23]† 23.4k 1.1M 186.3k 262.5k - - - - 23.4k 23.4k 577.0k - 23.4k - -

WebUI [48]† 162.3k 485.2k - - 59.6k 113.7k - - - - 110.7k 40.9k 160.3k - -
MultiUI [30]* 1.4M 5.2M 371.5k - - 684.7k - - - 1.2M - - 2.9M -
GUIEnv [10]* 70.5k 680.7k 328.3k 352.3k - - - - - - - - - - -

SeeClick-Web [12]* 270.8k 1.1M 541.5k 541.5k - - - - - - - - - - -
OmniAct [21]* 176 19.1k - - - - - - - - 19.1k - - - -

MOTIF [7]* 55 7.9k - - - - - - - - 7.9k - - - -
TOTAL 2.5M 20.6M 3.9M 4.8M 301.3k 427.3k 1.6M 101.4k 376.3k 376.3k 5.0M 40.9k 679.1k 2.9M 47.2k

Table 16. Data sources and statistics of UI-Pro GUI understanding dataset. Approximately two thirds of the tasks are newly generate
by the authors while one third is cleaned and included from existing dataset. †means that the authors generate fine-tuning samples from
unlabeled raw GUI data. * means that the authors clean the samples provided by the original datasets.

GUI Source %Invalid Elem

Common Crawl 2.5
Android Emulator 0.4
MobileViews [17] 24.5

WAE [9] 29.0
AndroidControl [23] 11.5

WebUI [48] 14.4
MultiUI [30] 3.0

SeeClick-Web [12] 0.2

Table 17. The percentage of invalid elements detected for the used
data source by the proposed denoising procedure.

Scenario Data Source #Used Steps Total

Mobile

AITW [38] 37.6k

380.0k

AITZ [57] 25.9k
AMEX [8] 38.7k

AndroidControl [23] 124.0k
GUIAct-smartphone [10] 64.3k

GUIOdyssey [31] 107.7k

Web
Mind2Web [14] 7.7k

144.9kGUIAct-web [10] 109.3k
WebLINX [32] 22.0k

Table 18. The number of samples included in the merged GUI agen
task fine-tuning data from each data source.




