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Supplementary Material

We provide an overview of the supplementary materials
to ensure a clear and comprehensive understanding.
• In Sec. 1, we detail the limitations and broader impact of

DenseVLM.
• In Sec. 2, we present the training details.
• In Sec. 3, we offer supplementary experiments on input

image sizes, region proposals, backbones, category sets
and threshold of region denoising for training VLMs.

• In Sec. 4, we show visualizations, including confusion
matrices and croppping feayures predictions, to demon-
strate foreground bias. .

• In Sec. 5, we present the dataset information for training
and evaluation.

1. Limitations and broader impact
Limitations: Our aim is to develop a region-language
alignment model that effectively integrates local visual
and semantic features, thereby improving open-vocabulary
dense prediction performance. Compared to previous pre-
trained Vision-Language Models (VLMs) [3, 13, 14, 17],
our proposed DenseVLM achieves superior results and sig-
nificantly improves downstream task performance. We be-
lieve DenseVLM has even greater potential. 1) Scalability.
DenseVLM is designed within an efficient, unsupervised
region-language alignment framework, making it adaptable
to various datasets. However, computational resource limi-
tations have restricted our ability to scale to larger datasets.
2) Model capacity. We employ the ViT-L/14 model from
CLIPSelf [14] as a powerful Pre-trained VLM (P-VLM).
Utilizing more robust VLMs can yield better performance,
and transferring their rich semantic knowledge to training
models is a promising direction. 3) Fine-grained Semantic.
We categorize objects into broad thing and stuff classes.
Fine-grained semantic segmentation and decoupled align-
ment would enhance the model’s ability to distinguish be-
tween similar categories. We plan to explore these avenues
in our future research.
Broader impact: DenseVLM exhibits notable potential
for open-vocabulary dense predictions within scenes, which
can enhance various applications such as robotics and envi-
ronmental monitoring. By enabling systems to recognize
and interpret a wide range of objects and contexts without
prior training on specific categories, DenseVLM facilitates
more adaptive and versatile applications. Given its broad
applicability and non-specialized nature, our method is de-
signed to support a variety of technical advancements with-
out directly addressing specific societal challenges.

1https://developer.nvidia.com/automatic-mixed-precision

item value

image size 512 × 512
optimizer AdamW [12]
learning rate 0.0001
β1 0.9
β2 0.98
weight decay 0.1
batch size (per card) 48
warmup steps [6] 1000
epochs 6
learning rate scheduler cosine decay [11]
number of GPUs 4
automatic mixed precision1 True

Table S1. Training details of DenseVLM.

2. Training details
We train all models on NVIDIA A40 GPUs to ensure a fair
comparison across experiments. The detailed configuration
is provided in Table S1. For the SA-1B dataset [9], we use
8×A40 GPUs to ensure efficient and scalable training.

For open-vocabulary segmentation, we train the models
such as SAN [15] and CAT-Seg [4] on the COCO-Stuff [1]
dataset for 80k iterations. For open-vocabulary detection,
models are trained for 3 epochs on the OV-COCO [2]
benchmark and 48 epochs on OV-LVIS [8] benchmark.

3. Additional experiments

Ablation study on input image sizes. To evaluate the ef-
fect of input image size on DenseVLM, we conduct exper-
iments with distinct resolutions: 224, 320, 512, 768 and
1024 pixels, for both training and inference. As shown
in Tab. S2, model’s performance on the region classifica-
tion task improves as image resolution increases from 224
to 1024 pixels. This enhancement can be attributed to the
greater detail captured at higher resolutions. However, this
improvement comes a significant increase in GPU memory
usage. Considering the trade-off between computational re-
sources and model performance, we resize the images to
512×512 pixels to achieve an optimal balance.
Ablation study on using region proposals. Follow-
ing RegionCLIP [17] for fine-tuning VLMs with pseudo-
labelled region-text pairs, we compare our approach to
CLIPSelf [14] in utilizing these pairs. As shown in Tab. S3,
CLIPSelf substitutes random image crops with pseudo



COCO ADE20K

Input GPU Memory Boxes Masks-T Masks-S Boxes Masks-T Masks-S
Image Size (per card) Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5

224 9G 60.1 79.9 49.4 62.4 35.3 64.2 40.0 70.0 36.3 56.4 50.3 77.0
320 11G 66.2 85.4 59.2 73.0 41.0 71.2 45.6 76.0 44.0 67.6 54.3 81.7
512 16G 73.4 90.5 71.0 84.8 45.6 77.8 51.3 82.2 52.1 78.0 57.8 85.5
768 27G 74.4 91.3 75.4 90.1 45.5 79.0 52.7 82.9 55.4 82.6 58.2 86.6

1024 39G 76.6 93.1 78.7 93.6 46.5 79.8 53.2 83.6 56.8 83.2 58.6 86.8

Table S2. Ablation study on input image sizes. We report the Top1 and Top5 mean accuracy on classifying boxes and panoptic masks on
COCO panoptic and ADE20K panoptic benchmarks. The GPU memory usage corresponds to a batch size of 12 on A40 GPU.

COCO ADE20K

Boxes Masks-T Masks-S Boxes Masks-T Masks-S
Method Region Proposals Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5

CLIPSelf ✗ 69.1 88.2 66.7 83.0 41.7 75.2 48.1 77.7 47.5 74.2 53.7 82.8
CLIPSelf ✓ 70.2 89.2 68.1 83.5 35.7 71.8 49.8 79.7 51.5 76.0 50.9 80.7

DenseVLM ✗ 73.4 90.5 71.0 84.8 45.6 77.8 51.3 82.2 52.1 78.0 57.8 85.5
DenseVLM ✓ 74.4 91.3 75.4 90.1 45.9 79.0 52.7 82.9 55.4 82.6 58.2 86.6

Table S3. Ablation study on using region proposals. We report the Top1 and Top5 mean accuracy on classifying boxes and panoptic masks
(thing and stuff) on COCO panoptic and ADE20K panoptic benchmarks.

Boxes Masks-T Masks-S
θ Top1 Top5 Top1 Top5 Top1 Top5

0.0 72.1 89.6 68.2 84.3 43.6 76.1
0.1 72.7 90.2 69.1 84.3 44.6 77.2
0.2 73.1 90.4 69.7 84.6 45.1 77.7
0.3 73.4 90.5 71.0 84.8 45.6 77.8
0.4 73.2 90.2 70.2 84.3 45.2 77.5
0.5 73.1 90.0 70.0 84.3 45.0 77.1
0.6 73.1 89.9 69.6 84.0 44.6 76.3

Table S4. Ablation study on threshold of θ in region denoising.

region-text pairs, resulting in an enhanced recognition for
foreground objects while concurrently observing a reduc-
tion in the accuracy of background identification. In con-
trast, our proposed DenseVLM achieves a notable improve-
ment in the recognition accuracy of foreground objects
while also improving the identification of background stuff.
Ablation study on the threshold θ. We perform an abla-
tion experiment to assess the impact of varying threshold θ
values of region denoising. As shown in Tab. S4, the model
performs the worst when θ = 0. When θ is set lower, the
Top-5 accuracy increases, but results in suboptimal perfor-
mance. This may be due to low-confidence categories caus-
ing alignment confusion for the model. Conversely, setting
θ too high filters out too many local images, decreasing per-
formance. By defaul, we select θ = 0.3 for DenseVLM.
Ablation study on various backbones. DenseVLM
exhibits adaptability to diverse backbones. As shown

in Tab. S5, our models achieve consistent superiority
over prior approaches [3, 14] across all dense prediction
tasks. Particularly, the ViT-B/16-based DenseVLM per-
forms comparably to the ViT-L/14-based CLIPSelf [14].
Utilizing ViT-L/14 with a large number of parameters as
initialization, DenseVLM achieves clearly enhancements
across all evaluated metrics, thereby facilitating superior
performance in dense prediction tasks.

Ablation study on different category sets. To assess the
impact of varying category sets, we conduct experiments
using four various sets: 133 (80), 171 (80), 273 (160),
and 316 (160), categorized into foreground and background
classes. The set of 133 categories exclusively comprises
COCO Panoptic [10] class set, while the 171-category set
consists solely of COCO-Stuff [1] class set. The 273-
category set integrates non-overlapping classes from both
COCO-Stuff and the ADE20K Panoptic [18] dataset, which
contains 150 categories. The 316-category set encom-
passes selected background classes from COCO-Stuff and
the ADE20K dataset, which includes 847 categories. Our
code accurately reflects all specified category sets.

As shown in Tab. S6, with the increase in the num-
ber of categories, the performance of our model progres-
sively improves when evaluated on the COCO Panoptic and
ADE20K Panoptic benchmarks. This is because the larger
category sets provide a richer representation of objects and
stuff, enabling the model to capture more fine-grained in-
formation, thereby enhancing its overall performance.



COCO ADE20K

Boxes Masks-T Masks-S Boxes Masks-T Masks-S
backbones VLMs Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5

ViT-B/16 OpenCLIP 49.8 74.3 51.9 72.2 29.2 54.9 28.4 54.1 29.6 53.4 37.9 66.6
ViT-B/16 CLIPSelf 67.6 87.8 64.4 81.2 44.5 77.1 43.4 76.0 44.0 71.1 50.7 82.1
ViT-B/16 DenseVLM* 71.9 90.2 70.0 84.3 47.8 79.4 48.5 79.2 49.0 75.2 55.1 85.2
ViT-B/16 DenseVLM 73.4 90.5 71.0 84.8 45.6 77.8 51.3 82.2 52.1 78.0 57.8 85.5
ViT-L/14 OpenCLIP 21.2 45.3 26.6 48.9 11.2 27.2 48.1 11.9 34.1 13.9 11.1 32.4
ViT-L/14 CLIPSelf 68.3 90.1 67.1 84.5 37.7 71.3 47.1 77.5 47.7 74.4 48.9 82.3
ViT-L/14 DenseVLM* 76.2 92.9 73.3 87.3 47.4 79.1 54.0 84.1 54.2 79.9 57.8 85.9
ViT-L/14 DenseVLM 75.2 91.8 73.3 87.1 45.5 78.1 54.5 85.0 55.6 82.1 58.1 86.4

Table S5. Ablation study on various backbones. We report the Top1 and Top5 mean accuracy on classifying boxes and panoptic masks
(thing and stuff) on COCO panoptic and ADE20K panoptic benchmarks. * indicates the model initialized by OpenCLIP [3].

COCO ADE20K

Boxes Masks-T Masks-S Boxes Masks-T Masks-S
Categories Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5

133 (80) 71.1 88.5 68.7 83.0 44.7 75.2 49.4 79.0 48.5 74.2 54.7 82.8
171 (80) 72.3 89.8 69.4 85.8 44.2 76.0 49.8 79.7 48.9 75.1 55.1 82.4
273 (160) 72.3 89.9 70.1 84.4 44.9 76.4 51.0 81.8 49.3 76.5 57.0 84.0
316 (204) 73.4 90.5 71.0 84.8 45.6 77.8 51.3 82.2 52.1 78.0 57.8 85.5

Table S6. Ablation study on different category sets. We report the Top1 and Top5 mean accuracy on classifying boxes and panoptic masks
(thing and stuff) on COCO panoptic and ADE20K panoptic benchmarks.

4. Visualizations

Confusion matrix. We compare the region classification
results of our method against previous approaches through
a confusion matrix visualization for panoptic masks (both
thing and stuff categories) on the COCO Panoptic dataset.
These confusion matrixes offer a systematic overview of re-
gion classification performance, illustrating the incidence
of accurate and erroneous classifications, particularly fa-
cilitating a precise assessment of models’ accuracy in dif-
ferentiating between thing and stuff categories. As shown
in Fig. S1, Fig. S2, and Fig. S3, prior methods, including
EVA-CLIP [13], RegionCLIP [17], and CLIPSelf [14], of-
ten misclassify background regions as co-occurring fore-
ground classes, such as incorrectly identifying snow as skis
or sky as kite. In contrast, as demonstrated in Fig. S4, our
DenseVLM achieves higher accuracy in recognizing each
category, with a notable improvement in the precision of
background object identification.

Image grid patches classification. We visualize the clas-
sification results of image grid patches using the powerful
ViT-L/14 model from CLIPSelf [14]. As shown in Fig. S5,
the model focuses heavily on foreground object recognition,
but significant portions of background patches are misclas-
sified as foreground objects. The training VLMs are prone
to learning these errors. Furthermore, regions with incorrect

classifications often have low confidence scores, highlight-
ing the importance of filtering them out.

5. Datasets of training and evaluation
COCO: COCO [10] is a large-scale panoptic segmentation
dataset encompassing 80 Thing and 53 Stuff categories. The
dataset comprises 118,000 images designated for the train-
ing set and 5,000 images for the validation set.
ADE20k: ADE20k [19] spans a broad spectrum of indoor
and outdoor scenes, comprising 2,000 images for the valida-
tion set. This dataset includes 100 Thing and 50 Stuff cate-
gories. We evaluate open-vocabulary semantic annotations
using both the extensive 847-category version (referred to
as A-847) and the more frequently adopted 150-category
version (referred to as A-150).
Pascal Context: Pascal-Context [5] constitutes an exten-
sive dataset derived from Pascal-VOC 2010. We evaluate
open-vocabulary semantic annotations using the complete
set of 459 classes, referred to as PC-459.
OV-COCO: The open-vocabulary detection COCO (OV-
COCO) benchmark, introduced in OV-RCNN [16], divides
the 65 object categories in the COCO dataset into 48 base
categories and 17 novel categories.
OV-LVIS: The open-vocabulary detection LVIS (OV-LVIS)
benchmark, introduced in ViLD [7], defines the 337 rare
categories from LVIS v1.0 dataset [8] as novel categories.
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Figure S1. Confusion matrix visualization for region classification results of EVA-CLIP.
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Figure S2. Confusion matrix visualization for region classification results of RegionCLIP.
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Figure S3. Confusion matrix visualization for region classification results of CLIPSelf.
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Figure S4. Confusion matrix visualization for region classification results of DenseVLM.



Figure S5. Visualization of image grid patches classification. The powerful ViT-L/14 model exhibits a pronounced focus on foreground
object recognition, even when significant portions of background patches are misclassified as foreground objects.
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