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Appendix

A. Implementation details
To address the computational cost of SEVA [2], which uses
a large fixed total number of reference and target frames
(K + M = 21), we fine-tune a more efficient version that
employs a reduced number of reference frames (K = 4) and
target views (M = 4). We apply LoRA [1] with rank 256
and randomly sample context views online during training.
Training proceeds for 600,000 iterations on 8 A40 GPUs
with a batch size of 24 per GPU, using the AdamW opti-
mizer with a learning rate of 3 × 10−6, weight decay of
10−4, and a cosine annealing schedule. For inference, we
set the classifier-free guidance scale to 3, the point map scal-
ing factor σ to 0.03, and α to 0.2 for surfel radius calcula-
tion.

B. Average pose calculation
To compute the average camera pose for rendering surfels,
we average translations tT+m with a simple mean, and rota-
tions RT+m by converting them to quaternions qm, align-
ing signs to a common hemisphere, and normalizing the
mean quaternion:

q̄ =

∑M
m=1 q̃m

∥
∑M

m=1 q̃m∥
, q̃m = sign(qm · q1) · qm.

The final average pose is c̄ =

[
R(q̄) t̄
0⊤ 1

]
, where R(q̄) de-

notes the rotation matrix from q̄ and t̄ = 1
M

∑M
m=1 tT+m.

C. Autoregressive point map prediction
Since we generate point maps for each view in an autore-
gressive manner, it is crucial to maintain their consistency
across a shared coordinate space. Point-map estimators
such as CUT3R include an optimization stage that jointly
refines the depth, camera parameters, and point maps. To

ensure a fixed camera trajectory, we freeze the camera pa-
rameters, which are user-defined inputs. Additionally, at
each generation step when we have T frames generated
so far, we freeze all previously predicted depth maps for
frames 1, 2, . . . , T during optimization. This ensures that
the resulting point maps and surfel representations remain
consistent and causal. We then save the optimized depth
maps of the newly generated frames T + 1, . . . , T +M for
future prediction.

D. Limitations and discussion

Evaluation protocol. Since there is no established bench-
mark for evaluating long-term consistency in scene video
generation, we adopt cyclic trajectories as a proxy for as-
sessment. However, these trajectories remain relatively
simple and contain only limited occlusions, which means
the full potential of VMem in handling occlusions is not
fully demonstrated. Moreover, existing evaluation met-
rics primarily capture low-level texture similarity in halluci-
nated content, rather than assessing true multi-view consis-
tency—an inherent limitation of single-view autoregressive
generation. As such, there is a clear need for more standard-
ized evaluation protocols, which we leave for future explo-
ration.

Limited training data and computing resources. Due to
limited computational resources, our more efficient version
of the generator based on SEVA [2] was fine-tuned only
on the RealEstate10K dataset [3]. This dataset primarily
consists of indoor scenes and a limited number of outdoor
real-estate scenarios. Consequently, the model may strug-
gle to generalize to broader contexts, with performance po-
tentially degrading when dealing with natural landscapes or
images containing moving objects compared to indoor en-
vironments. We believe this limitation stems primarily from
insufficient dataset diversity rather than fundamental model
constraints.

Inference speed. Due to the multi-step sampling process
of diffusion models, VMem requires 4.16 seconds to gen-
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erate a single frame on an RTX 4090 GPU. This falls short
of the real-time performance needed for applications such
as virtual reality. We believe that future advancements in
single-step image-set models and improvements in compu-
tational infrastructure hold promise for significantly accel-
erating inference speed.

Future improvements. Since our memory module relies
heavily on the capabilities of the off-the-shelf image-set
generator and the point map predictor, the performance of
VMem is expected to improve as these underlying models
continue to advance.
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