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Appendix

A. Implementation details

To address the computational cost of SEVA [2], which uses
a large fixed total number of reference and target frames
(K + M = 21), we fine-tune a more efficient version that
employs a reduced number of reference frames (X = 4) and
target views (M = 4). We apply LoRA [1] with rank 256
and randomly sample context views online during training.
Training proceeds for 600,000 iterations on 8§ A40 GPUs
with a batch size of 24 per GPU, using the AdamW opti-
mizer with a learning rate of 3 x 1076, weight decay of
1074, and a cosine annealing schedule. For inference, we
set the classifier-free guidance scale to 3, the point map scal-
ing factor o to 0.03, and « to 0.2 for surfel radius calcula-
tion.

B. Average pose calculation

To compute the average camera pose for rendering surfels,
we average translations t7 ,,, with a simple mean, and rota-
tions Rr4,,, by converting them to quaternions q,,, align-
ing signs to a common hemisphere, and normalizing the
mean quaternion:
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The final average pose is ¢ = [ ﬂ , where R(q) de-

C. Autoregressive point map prediction

Since we generate point maps for each view in an autore-
gressive manner, it is crucial to maintain their consistency
across a shared coordinate space. Point-map estimators
such as CUT3R include an optimization stage that jointly
refines the depth, camera parameters, and point maps. To

ensure a fixed camera trajectory, we freeze the camera pa-
rameters, which are user-defined inputs. Additionally, at
each generation step when we have T frames generated
so far, we freeze all previously predicted depth maps for
frames 1,2, ...,7T during optimization. This ensures that
the resulting point maps and surfel representations remain
consistent and causal. We then save the optimized depth
maps of the newly generated frames 7'+ 1,...,7 + M for
future prediction.

D. Limitations and discussion

Evaluation protocol. Since there is no established bench-
mark for evaluating long-term consistency in scene video
generation, we adopt cyclic trajectories as a proxy for as-
sessment. However, these trajectories remain relatively
simple and contain only limited occlusions, which means
the full potential of VMem in handling occlusions is not
fully demonstrated. Moreover, existing evaluation met-
rics primarily capture low-level texture similarity in halluci-
nated content, rather than assessing true multi-view consis-
tency—an inherent limitation of single-view autoregressive
generation. As such, there is a clear need for more standard-
ized evaluation protocols, which we leave for future explo-
ration.

Limited training data and computing resources. Due to
limited computational resources, our more efficient version
of the generator based on SEVA [2] was fine-tuned only
on the RealEstate 10K dataset [3]. This dataset primarily
consists of indoor scenes and a limited number of outdoor
real-estate scenarios. Consequently, the model may strug-
gle to generalize to broader contexts, with performance po-
tentially degrading when dealing with natural landscapes or
images containing moving objects compared to indoor en-
vironments. We believe this limitation stems primarily from
insufficient dataset diversity rather than fundamental model
constraints.

Inference speed. Due to the multi-step sampling process
of diffusion models, VMem requires 4.16 seconds to gen-



erate a single frame on an RTX 4090 GPU. This falls short
of the real-time performance needed for applications such
as virtual reality. We believe that future advancements in
single-step image-set models and improvements in compu-
tational infrastructure hold promise for significantly accel-
erating inference speed.

Future improvements. Since our memory module relies
heavily on the capabilities of the off-the-shelf image-set
generator and the point map predictor, the performance of
VMem is expected to improve as these underlying models
continue to advance.
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