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Figure 1. Illustration of our proposed layer selection methods:
uniform sampling (left) and sparse gate (right). Uniform sampling
selects K, layers from L prior features, ranging from the b-th to L-
th layer. The sparse gate, utilizing the STE technique (see Eq. (1)),
aggregates multiple layer features and filters out irrelevant ones.

Method Head #Train Param mloU Iters
ViT-Split-L (sparse gate) | Linear 164.1M 85.7 20k
ViT-Split-L (uniform) Linear 164.1M 85.8 20k

Table 1. Comparison of two layer selection methods on semantic
segmentation. The results are conducted on Cityscales val with
896*896 resolution image.

Method
ViT-Split-S (sparse gate) | Linear
ViT-Split-S (uniform) Linear
ViT-Split-B (sparse gate) | Linear
ViT-Split-B (uniform) Linear
ViT-Split-L (sparse gate) | Linear
ViT-Split-L (uniform) Linear

Head #Train Param mloU Iters
10.2M 51.5 40k
10.2M 51.6 40k
40.5M 55.5 40k
40.5M 55.7 40k
88.6M 58.1 40k
88.6M 58.2 40k

Table 2. Comparison of two layer selection methods on semantic
segmentation. The results are conducted on ADE20K val with
512%*512 resolution image.

A. Training details
A.1l. Hyper-parameter setting

We outline the settings for several key hyperparameters of
ViT-Split in Tab. 3, including weight initialization, the num-
ber of tuning layers (K3), and the number of selected prior
features (K,), etc. We conduct experiments across four
tasks: semantic segmentation, monocular depth prediction,
detection, and visual question answering (VQA).

The selection guideline of K;, K, and b. As shown
in Tab. 3, these hyperparameters vary across tasks, with
their importance ranked as K; > K, > b. As shown in
Fig. 2, K, is the most critical hyperparameter and is task-

dependent. For dense prediction tasks (e.g., segmentation or
monocular depth estimation), tuning smaller layers (around
1/6 to 1/4) yields good performance. For detection tasks,
since the pretrained task differs significantly from detection
(see Fig. 4), tuning more layers is necessary for better re-
sults. K, has a smaller impact on results compared to K,
and K, = 4 works well in most cases. Typically, we set
b = 2 to sample prior features from both shallow and deep
layers. However, for tasks like VQA, only the last-layer fea-
tures are needed, as the LLM decoder benefits more from
high-level features while low-level features may introduce
noise.

A.2. Sizes of various heads

We provide the sizes of the various heads used in ViT-Split
for different tasks in Tab. 5, including segmentation (seg.),
detection (det.) and monocular depth estimation (mde).

A.3. Details of tuning the VLLM

LLaVA-1.5 employs a CLIP-based vision encoder for im-
age encoding. We introduce a single-layer task head copied
from CLIP’s original final layer (i.e., K; = 1) and utilize
only the last-layer feature of CLIP as the input to the prior
head (i.e., K, = 1). We replace the original MLP projector
in LLaVA-1.5 with with our ViT-Split for two-stage train-
ing. The training follows the same hyperparameter settings
as the original LLaVA-1.5.

A.4. Architecture details of various used VFMs

We provide the architecture details of various VFMs used
in the main content in Tab. 6.

B. Layer selection

B.1. Sparse gate

Another way is to learn the sparse gate G5, € RE*%» from
the dataset. This method eliminates the need for carefully
tuning hyperparameters to select prior features. To remove
noisy features, we enforce the sparsity in the gate by se-
lecting top K, scores, and normalizing the remained ones.
However, directly optimizing G, is infeasible since the
sparsity operation is non-differentiable. To address this is-
sue, we employ the Straight-Through Estimator (STE) tech-
nique which allows for approximate gradient optimization.
Specifically, let G € RE*E» be the learnable gate, which is
continuous. From G, we obtain the sparse gates G, by se-
lecting the top K, elements in each column. We then apply



Method Initialization Tasks Datasets Imageres. K; K, b
ViT-Split-S DINOv2 Semantic segmentation ADE20K (512,512) 3 4 2
ViT-Split-B DINOv2 Semantic segmentation ADE20K (512,512) 3 4 2
ViT-Split-L DINOv2 Semantic segmentation ADE20K (512,512) 4 8 2
ViT-Split-L DINOv2 Semantic segmentation ADE20K (896,89%) 4 8 2
ViT-Split-G DINOv2 Semantic segmentation ADE20K (896,896) 8 14 26
ViT-Split-L DINOv2 Semantic segmentation Cityscapes (896,896) 10 8 2
ViT-Split-L DINOvV2 Semantic segmentation Pascal Context (480,480) 6 10 2
ViT-Split-S DINOv2 Monocular depth estimation NYU-V2 (416,544) 3 4 2
ViT-Split-B DINOv2 Monocular depth estimation NYU-V2 (416,544) 4 4 2
ViT-Split-L DINOv2 Monocular depth estimation NYU-V2 (416,544) 3 4 6
ViT-Split-S DINOvV2  Detection, instance segmentation COCO17 (1024, 1024) 11 4 2
ViT-Split-B DINOvV2  Detection, instance segmentation COCO17 (1024,1024) 11 6 2
ViT-Split-L DINOv2  Detection, instance segmentation COCO17 (1024,1024) 23 8 6

LLaVA+ViT-Split-L CLIP Vision question answering VQA benchmarks (512,512) 1 1 23

Table 3. The settings of the important hyper-parameters of ViT-Split on different tasks, including semantic segmentation, monocular depth
estimation, detection and instance segmentation, and vision question answering (VQA).

Architecture Head #Train Param () AbsRel () RMSE () log;q(}) &1 (D) d2(P) Iz (D)
ResNet-101 [10] DORN [9] 110M 0.115 0.509 0.051 0.828 0.965 0.992
ViT [7] DPT [23] - 0.110 0.357 0.045 0.904 0988 0.998
EfficientNet-B5 [26] AdaBins [2] 7TM 0.103 0.364 0.044 0.903  0.984 0.997
ResNet-101 [10] P3Depth [20] - 0.104 0.356 0.043 0.898  0.981 0.996
Swin-L [15] BinsFormer [13] 273M 0.094 0.329 0.04 0.923  0.989 0.997
Swin-L [15] NeWCREFs [28] 270M 0.095 0.334 0.041 0.922  0.992 -

Swin-L [16] PixelFormer [1] - 0.090 0.322 0.039 0.929  0.991 0.998
Swin-L [15] VA-DepthNet [14] - 0.086 0.304 - 0.937 0992 0.998
Swin-L [15] iDisc [21] 209M 0.086 0.314 0.038 0940 0.993 0.999
Swin-L [16] IEBins [24] 273M 0.087 0314 0.038 0936 0992 0.998
SwinV2-L [16] AIT-P [18] - 0.076 0.275 0.033 0954 0994 0.999
DINOV2-G* [19] DPT [23] - 0.0907 0.279 0.0371 09497 0.996 0.9994
ViT-Split-S* Linear 9.3M 0.0897 0.3358 0.039  0.9327 0.9908 0.9985
ViT-Split-Bi Linear 37.0M 0.0853 0.3019 0.0365 0.9412 0.9947 0.9991
ViT-Split-L* Linear 65.5M 0.078 0.2672 0.0327  0.9622 0.9967 0.9994

Table 4. Monocular depth estimation results on NYU-V2 with 416%544 resolution image. “I” represents the use of DINOv2. Other

backbones are initialized with ImageNet-1K/22K weights

Small Base

segmentation 4.78M 19.00M 37.91M
detection  17.54M 17.54M 17.54M
MDE 0.34M  1.28M 2.23M

Architectures Task Large

Linear
Mask-RCNN
Linear

Table 5. The size of different heads used for ViT-Split.

STE by optimizing the gradient of G:
Gsp = Gsp +G — Gno,grad~ (1)

After obtaining the sparse gate G, € RL*5r, we can get
the selected prior features by multiplying with the prior fea-
ture map f, € R"*W*L*D from the layer dimension.

Architectures Embed dim Layers Params (M)

DINOv2-S 384 12 22
DINOv2-B 768 12 87
DINOv2-L 1024 24 304
DINOv2-G 1536 40 1137
CLIP-L 1024 24 428

Table 6. The architecture details of used VFMs.

B.2. Performance on segmentation task

We present a comparison of layer selection methods on seg-
mentation benchmarks, including Cityscapes and ADE20K,
in Tab. 1 and Tab. 2. For a fair comparison, we set the
same K for both selection methods and use K, = 4 for
all sparse-gate-based experiments. Our results show that
sparse gate selection achieves comparable performance to



uniform sampling on segmentation tasks without requiring
manual hyper-parameter selection. It indicates that sparse
gate selection is a promising and versatile approach for re-
ducing the number of hyper-parameters.

C. Motivation of freezing the backbone

Freezing the backbone has three main motivations. @ Im-
proved training and inference speed. Fig. 7 shows our
ViT-Split achieves 2.4~5x, and 2~6x speedup over other
VEM-Adapters on training and inference efficiency. Addi-
tionally, as detailed in Tab. 8, ViT-Split is 1.4~3x faster
than finetuning the entire backbone with a linear/UperNet
head. @ Enhanced performance with prior features. We
admit that the inference speed will decrease compared with
finetuning DINOv2-linear due to the extra heads (around
30% on segmentation tasks). However, the performance
can be further improved, which is also the main motiva-
tion of other VFM-adapters. Compared with these, ViT-
Split achieves better training and inference efficiency. ®
Task adaptivity. ViT-Split requires storing only separate
task-specific heads, rather than the entire model, making it
more adaptive and memory-efficient for deployment across
multiple tasks.

D. Explanation of the lower performance on
detection task

We acknowledge that the performance difference between
ViT-Split and ViT-CoMer on Mask R-CNN (Tab. 5) is rel-
atively small. However, ViT-Split uses only 90%—-95% of
ViT-CoMer’s trainable parameters, already demonstrating
clear advantages in training efficiency while maintaining
comparable accuracy. The primary reason ViT-Split does
not significantly outperform other VFM-adapters lies in the
relatively weak task alignment of the prior features from DI-
NOvV2 for object detection tasks. Unlike DETR-style mod-
els, which are pre-trained with strong detection-oriented ob-
jectives, self-supervised models like DINOv2 tend to pro-
vide less directly transferable features for detection. This
necessitates using more layers in the task head (i.e., larger
K,), effectively making ViT-Split rely more on fine-tuning,
similar to other VFM-adapters. As self-supervised models
begin to offer stronger detection-aware priors, we expect
ViT-Split to better leverage them and close the gap with cur-
rent SOTA DETR-style models.

E. More results

E.1. An apple-to-apple comparison with other
VFM-adapters on segmentation

We provide an apple-to-apple comparison with the SOTA
VEM-adapters in Tab. 7, i.e., ViT-CoMer [27] and ViT-
Adapter [6]. All models are trained for 40K iterations on
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Figure 2. Parameter sensitivity analysis of K; and K, in ViT-Split.
The experiments are conducted using ViT-Split-S on ADE20K.

ADE20K, using a UperNet head for the baselines and a
linear head for ViT-Split. For VFM-adapters, we adopt
a learning rate schedule similar to that used in detection
tasks, incorporating layer-wise decay with carefully tuned
rates for each baseline to ensure strong performance. Re-
sults show that with DINOVv?2 initialization, ViT-Split con-
sistently outperforms other VFM-adapters across different
model sizes. This highlights ViT-Split’s ability to better
leverage the strong prior knowledge from DINOv2 without
altering the original feature representations, which often re-
sults in suboptimal performance in other adapters.

Table 7. VFM-adapter comparison on ADE20K (40K iterations).

DINOV2-S DINOv2-B DINOvV2-L
Method
mAP #Param mAP #Param mAP #Param
ViT-Adapter 454  57.IM 499 1345M 522 364.6M
ViT-CoMer  44.6 61.8M 484 145.6M 51.8 3842M

ViT-Split 51.6 102M 557  40.5M 58.2 88.6M

E.2. Hyper-parameter sensitivity analysis

We provide the analysis of two important hyper-parameters
K; and K, in our ViT-Split, which is given in Fig. 2.

Influence of K;. As shown in Fig. 2a, the mIoU initially
improves when tuning between one and three layers. This
improvement is likely due to the task head previously under-
fitting the task. However, as more layers are tuned, overall
performance begins to decline, suggesting that the task head
starts to overfit. This experiment demonstrates that tuning
additional layers does not necessarily guarantee better per-
formance and can easily lead to overfitting. Therefore, we
opt to tune three layers in this case.

Influence of K. As shown in Fig. 2b, the mloU peaks
when selecting four prior layer features. Selecting too few
layers may result in missing critical information, while se-
lecting too many can introduce noise. Additionally, we
observe that increasing the number of selected layers does
not increase more training parameters, highlighting the ef-
ficiency of the prior head. As a result, we choose four prior
features in this case.
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Figure 3. The CKA of SAM (a) and MAE (b). (c) Training com-
parison between ViT-Split-s and DINOv2-s-UperNet on ADE20K.

E.3. Visualization

E.3.1. CKA analysis of other VFMs

We also present the CKA results for MAE-L [11] and SAM-
L [12] in Fig. 3. The feature representations in the early
layers of these VFMs exhibit similar patterns, as do those
in the later layers. Based on these findings as well as those
in the main paper, we hypothesize that our observation—
that the layers of several VFMs can be divided into two
components—may hold true for self-supervised models pre-
trained on large-scale dataset (e.g., DINOv2 [19], MAE
[11], EVA2 [8], etc.), as well as weakly supervised ones
(say CLIP [22], SigLip [29], SAM [12], etc.).

E.3.2. CKA analysis of different DINOV2 sizes

We also provide the CKA visualizations of different DI-
NOv2 sizes in Fig. 6. From these visualizations, we observe
that features in the early layers are more similar across dif-
ferent DINOV2 sizes compared to those in the later layers.
As earlier mentioned, the early layers serve as an encoder
to capture low-level features, while the later layers act as a
decoder to produce task-specific features.

E.3.3. More layer feature comparison

We present additional visualizations of DINOv2 layer fea-
tures across different tasks (i.e., DINOv2 pretraining, seg-
mentation, and detection) in Fig. 4. These results demon-
strate that earlier-layer features from various tasks con-
sistently focus on detailed, low-level information. How-
ever, deeper-layer features diverge significantly between
tasks [3—5]. Specifically, features from both the origi-
nal DINOv2 pretraining and semantic segmentation em-
phasize semantic-level information of particular objects,
whereas detection features tend to highlight object corners
and boundaries.

E.3.4. Semantic segmentation and instance segmentation
results

We present semantic segmentation and instance segmenta-
tion results based on our ViT-Split-L (DINOv2 pretrained)
in Fig. 5. We utilize ADE20K and COCO2017 datasets for
training these two tasks, respectively, and evaluate both on
the ADE20K validation dataset.

It is worth noting that both results are obtained using the
same frozen DINOv2-L backbone, meaning only the task-
specific adapters and heads require training. Consequently,
the overall computational cost and the number of parame-
ters are significantly reduced compared to previous VFM-
adapters, while achieving competitive or superior perfor-
mance. These visualizations demonstrate the strong gen-
eralization capability of ViT-Split, highlighting its versa-
tility, effectiveness, and efficiency across multiple down-
stream tasks.

E.4. Training efficiency comparison

Type ViT-Split-linear DINOv2-linear DINOv2-UperNet

Small 9m?25s 15m28s 31m21s
Base 17m41s 25m16s 40m23s
Large 32m49s 44m22s 1h19m25s

Table 8. Training time comparison on ADE20K (tuning 10k itera-
tions on 4*A6000Ada). DINOv2-linear and DINOv2-UperNet are
finetuned end to end.

To further illustrate the training efficiency compared
with different heads on segmentation task, we provide the
training time comparison in Tab. 8. For fair comparison, all
of these baselines (except for ViT-Split) are finetuned using
the DINOv2 backbone with two different heads (linear and
UperNet) for 10k iterations on 4*A6000Ada.

From Tab. 8, we observe that our ViT-Split reduces the
training time on average of DINOv2-linear by approxi-
mately 42% on average while maintaining the same lin-
ear head. This improvement in training efficiency is at-
tributed to the task-head design, which prevents gradients
from propagating to the early layers of the backbone. Com-
pared to finetuning a VFM with a larger segmentation head
(DINOv2-UperNet), our ViT-Split is 2.5 times faster across
three sizes on average. This highlights the huge computa-
tion overhead introduced by a large segmentation head and
demonstrates the efficiency of our ViT-Split.

E.S. Longer training time

We try to increase the training time to illustrate the upper
bound of ViT-Split. We conduct an experiment in Fig. 3 to
explore the performance upper bound with extended train-
ing (i.e., 160K iterations). As shown in Fig. 3 (c), ViT-
Split-s achieves 52.2%, improving from 51.5% at 40K it-
erations and surpassing DINOv2s-UperNet (51.6%) while
maintaining faster training speeds. This demonstrates that
ViT-Split can achieve better performance when training for
longer time.
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Figure 4. Further comparison of DINOv2-S layer features across original features, segmentation, and detection tasks. In each figure,
the first, second, and third rows correspond to original, segmentation, and detection features, respectively. It can be observed that
features from earlier layers exhibit similar patterns across different tasks, reflecting common low-level local features. However, features
from deeper layers diverge significantly according to their specific downstream tasks.









Figure 5. Semantic segmentation and instance segmentation results based on our ViT-Split-L (left: original image, middle: semantic
segmentation results, right: instance segmentation results).
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Figure 6. The CKA visualizations of different sizes of DINOv2.

E.6. Monocular depth estimation

Settings. To further investigate the effectiveness of our ViT-
Split, we also provide the results on monocular depth esti-
mation (MDE) on NYU-V2 [25] benchmark in Tab. 4. Fol-
lowing [13], we utilize the AdamW optimizer with an initial
learning rate of 3e-4 and a weight decay of 1e-2. We multi-
ply 0.1 by the learning rate of the task head during training.
Moreover, one cycle learning rate decay schedule is utilized
for better performance. We train ViT-Split for 384K itera-
tions with a total batch size of 16 on 4*A6000ada GPUs.

As shown in Tab. 4, our ViT-Split achieves competitive
or even superior results compared to previous state-of-the-
art methods, while using a minimal number of trainable pa-
rameters. Notably, ViT-Split employs only a single linear
head rather than a specially designed head, highlighting the
potential of our approach. Leveraging the prior knowledge
embedded in vision foundation models (VFMs), we believe
the size of the downstream task head (e.g., for depth predic-
tion) can be further reduced to improve efficiency.

When compared to DINOv2-G with DPT [23], which
uses the same DINOv2 initialization but a larger and
more sophisticated head, our smaller ViT-Split-B ver-
sion achieves similar performance with fewer parameters,
demonstrating both the effectiveness and efficiency of our
method. Furthermore, compared to traditional end-to-end
fine-tuning approaches, ViT-Split achieves better perfor-
mance by fully utilizing the prior knowledge inherent in
VEMs. This also highlights the significant potential of
large-scale self-supervised learning initialization over tra-
ditional supervised learning initialization.

E.7. Segmentation on Pascal Context

Settings. Apart from ADE20K and Cityscapes, we also
provide the results on Pascal Context [17] in Tab. 9. We
utilize the AdamW optimizer with an initial learning rate
of le-4 and weight decay of le-2. We multiply by 0.1 to
the task head during training. We train our model for 20K
iterations, and the total batch size is set to 16.

As shown in Tab. 9, our method outperforms ViT-
Adapter, achieving a 2% improvement for the base model
and a 0.3% improvement for the large model, using just a
simple linear head and training for only 20K iterations. The
results demonstrate the strength of VFMs, with our method
achieving both effectiveness and efficiency by fully utiliz-

Method Head #Train Param mloU (SS/MS) Schedule
ViT-Adapter-BT | Mask2former 120M 64.0/64.4 40k
ViT-Adapter-L UperNet 451M 67.0/67.5 80k
ViT-Adapter-L | Mask2former 568M 67.8/68.2 80k
ViT-Split-B* Linear 47.5M 66.4/66.8 20k
ViT-Split-L* Linear 115.8M 68.1/68.6 20k

Table 9. Semantic segmentation results on the Pascal Context
val with 480%480 resolution image. “{” indicates the BEIT ini-
tialization and “7” represents the use of DINOv2.

ing the prior knowledge within the VFMs.

F. Limitations

Currently, we have demonstrated the effectiveness of ViT-
Split only on a limited set of VFMs, such as DINOv2 and
CLIP, leaving its performance on a broader range of models
to be explored in future work.
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