
Supplementary Material for What we need is explicit controllability:
Training 3D gaze estimator using only facial images

In this supplementary material, we provide more details,
results and discussions about our method.

1. More Details
1.1. Gaze Targets on the Virtual Screen

In this part, we introduce how to place a virtual screen
in front of our learned 3D Head. First, we calculate the
screen-to-eye distance d based on the type of dataset. For
instance, d is set as 1.0 meter in EVE to approximate the
typical distance between face and screen. For the Columbia
dataset, d is set as 2.5 meter by following its data collection
process. Next, we calculate the horizontal field of view fovx

and the vertical field of view fovy for the screen by using:

fovx = 2
N

max
i=1

|arcsin(gi
x)|

fovy = 2
N

max
n=1

|arcsin(gi
y)|

(1)

where N is the total number of the input facial images, gi is
the average unit vector of the pseudo 3D gaze directions of
the left eye gi

left and right eye gi
right, g

i
x and gi

y are the x and
y components of gi, respectively.

1.2. Gaze Sample Generation
To generate facial images with corresponding gaze direc-

tions, we first sample the 3DMM and lighting parameters
from the training images of each subject. Then, we place a
virtual screen in front of the face (see Sec. 1.1) and randomly
generate gaze targets on it, where each eyeball is rotated
according to the line connecting the eyeball center to the
gaze target (see Fig. 1). Third, we calculate a new camera
pose by performing interpolation between two camera poses
sampled from the training images. Finally, we render a new
face image based on the new camera pose and normalize it
to the size of 224×224 based on [5].

1.3. Network Architectures of Ω
Our lighting model Ω takes the lighting encoding flight

of each image and the positional encoding fpos of the 3D
Gaussian as input and outputs the color c of the correspond-
ing 3D Gaussian. During the training phase, flight and fpos
are initialized as zero vectors and are gradually optimized
through backpropagation to learn the lighting information
and high-frequency texture details from different images.

As shown in Fig.2, Ω is a 4-layer MLP, where the first
three layers use the LeakyReLU activation function, and the

Figure 1. To generate pseudo gaze directions, we first construct a
virtual screen in front of the face. Next, we randomly sample gaze
targets on it. The eyeballs are then rotated according to the direction
of the line connecting the centers of the left and right eyeballs to
the selected gaze target, thereby determining the gaze direction.
Finally, the rotated eyes, along with the original 3D representation,
are used to generate the corresponding facial images.

Figure 2. The network architecture of Ω.

last layer uses the sigmoid function to produce colors within
the range of (0, 1). In practice, we set the dimensions of fpos
and flight as 72 and 27, respectively.

2. More Results
2.1. Settings
We set λ1=λ4=λ6=1.0, λ2=0.75, λ5=1.5, λ3=1e-2, ϵscal =
0.6 and ϵpos = 1.0. These parameters are either inherited
from existing works [1, 2] or adjusted to balance the scale
of each term. To train the 3D head model of each subject,
we use identical or fewer number of images compared with
existing methods on each dataset, 600 for EVE, 300 for MPII
and 105 for Columbia.

2.2. Head Pose
In this part, we discuss the impact of the head pose in the

input facial image, where the facial images are captured from
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Figure 3. Example of different head poses on EVE and Columbia.

Cam View webcaml webcamc basler webcamr

Gaze Error 12.45° 7.39° 8.80° 12.69°

Table 1. Evaluation results of different head poses on EVE.

Cam View -30° -15° 0° 15° 30°
Gaze Error 7.87° 6.45° 6.08° 6.64° 6.62°

Table 2. Evaluation results of different head poses on Columbia.

Dataset EVE Columbia MPII
EVE - 9.17° 9.45°

Columbia 13.75° - 10.72°
MPII 12.01° 8.23° -

Table 3. Cross-dataset results on EVE, Columbia and MPII by
training on one dataset and evaluate on the other two.

Dataset M+C→E E+M→C E+C→M
Gaze Error 10.35° 7.48° 7.78°

Table 4. Cross-dataset results on EVE (E), Columbia (C) and MPII
(M) by training on two datasets and evaluate on the remaining one.

Method 1 2 3 4 5
UnityEyes[4] 23 45 9 58 25
SimGAN[3] 121 155 114 85 93
GaussianAvatars[2] 114 100 159 126 113
Ours 242 200 218 231 269

Table 5. The voting results of the five volunteers with respect to the
eye images generated by using the four methods.

four or five different camera perspectives (see Fig. 3) and
the pose variations among different subjects are relatively
small for the same camera perspective. The gaze estimation
results of different head poses are reported in Tab. 1 and
Tab. 2. It is obvious that the gaze estimation performance
is sensitive to head pose. The frontal face tends to have
better results. Conversely, the lateral face tend to have worse
results. The reason may lie in the decreased performance of
facial landmark detection.

2.3. Cross-dataset Evaluation
In this part, we report our cross-dataset evaluation results

on EVE, MPII and Columbia datasets under two different
settings. The results shown in Tab. 3 and Tab. 4 reveal

Figure 4. The employed tool for user study.
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Figure 5. Visual demonstration of the results of our lighting model.

clear performance improvement on the gaze estimation when
using more datasets for model training.

2.4. User Study
For user study, we recruited five volunteers by asking them
to vote on 500 random samples generated by UnityEyes,
SimGAN, GaussianAvatars and our method (see Fig.4). The
results is reported in Tab. 5. Accordingly, the eye images
generated by our method received the most votes from all
five volunteers, which indicates that our method is capable
of generating more realistic eye images that better conform
to human perception.

2.5. Visual Ablation
Lighting model. As shown in Fig. 5, compared with

the baseline [2] and Ours without lighting model, our fi-
nal results exhibits better ability in capturing the lighting
conditions of the input images.

RSR. Fig. 6 show that the introduction of RSR can help



Figure 6. Visual demonstration of the results of RSR. The red dots
indicate the projected positions of the mesh pupil points.

to correctly align the pupil points in the mesh with the 3D
Gaussian pupil points, and the generated iris images appear
more circular.

3. Discussions
Although our method achieves state-of-the-art performance

in both gaze prediction and image quality, a performance
gap remains between our results and those of supervised
methods. The possible reasons may lie in imperfect 3D rep-
resentations and limited lighting variations for generating
facial images. For instance, our lighting model can only
capture the existing illumination in the input facial images
and does not support relighting. Since our method requires
to train a 3D head model for each subject, it may suffer from
some extra time costs, but it can improve the flexibility on
gaze data collection, and reduce the constrains and require-
ments for lab-based calibration on head and eyeballs for data
collection. Besides, our method is limited to the performance
of head tracker, which may restrict the geometrical realism.
We intend to solve these limitations in our follow up work.

References
[1] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and

George Drettakis. 3d gaussian splatting for real-time radiance
field rendering. ACM Transactions on Graphics, 42(4), 2023.
1

[2] Shenhan Qian, Tobias Kirschstein, Liam Schoneveld, Davide
Davoli, Simon Giebenhain, and Matthias Nießner. Gaussiana-
vatars: Photorealistic head avatars with rigged 3d gaussians. In
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 20299–20309, 2024. 1, 2

[3] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua
Susskind, Wenda Wang, and Russell Webb. Learning from sim-
ulated and unsupervised images through adversarial training.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2107–2116, 2017. 2

[4] Erroll Wood, Tadas Baltrušaitis, Louis-Philippe Morency, Peter
Robinson, and Andreas Bulling. Learning an appearance-
based gaze estimator from one million synthesised images. In
Proceedings of the Ninth Biennial ACM Symposium on Eye
Tracking Research Applications, pages 131–138, 2016. 2

[5] Xucong Zhang, Yusuke Sugano, and Andreas Bulling. Revisit-
ing data normalization for appearance-based gaze estimation.
In Proceedings of the ACM Symposium on Eye Tracking Re-
search Applications, pages 1–9, 2018. 1


	More Details
	Gaze Targets on the Virtual Screen
	Gaze Sample Generation
	Network Architectures of 

	More Results
	Settings
	Head Pose
	Cross-dataset Evaluation
	User Study
	Visual Ablation

	Discussions

