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A. Additional Evaluation

Additional ablation. We provide additional ablation on
diffusion parameters including s1, s2, and γ in Table S1.
The performances of different configurations slightly drop
compared to our optimal values. In particular, lower s1 and
s2 insufficiently leverage video priors, while higher values
could weaken adherence to the physics simulation. Simi-
larly, lower γ under-leverage video priors.
Staged evaluation. We design a staged evaluation with in-
creasing complexity in a series of scenes (Figure S1): a sim-
ple rigid ball falling onto a desk (stage 1), make the ball
elastoplastic (stage 2), replace the desk with water to form
multiphysics (stage 3), and replace the ball with a duck for
more complex shape (stage 4). As shown in the diagrams
in Figure S2, while baseline methods perform well in early
stages with simple physics, our method significantly out-
performs baselines in later stages where the scenes involve
complex physics and geometry.

B. Technical Details
B.1. Additional Implementation Details
When conditioning the video generator with simulated dy-
namics, we use the standard resolution and time values:
H = 480, W = 720, with T = 48 frames (in total 49
frames output). For sampling, we use a DDIM [57] sched-
uler and iterate S = 25 steps on the warped noise for the
final video output. We empirically set degradation factor
γ = 0.4 and apply appearance signal at s1 = 21, s2 = 18
diffusion steps , as this combination usually provides the
optimal results.

B.2. Reconstructing Background
In a nutshell, the initial scene background B0 is generated
by decomposing the input image I into several image layers,
unprojecting all pixels in each layer to 3D space with esti-
mated depth [31], followed by a photometric optimization
to match the rendering with the input image I via differen-
tiable rendering [32]. We refer the reader to Yu et al. [72]
for more details of the generation process.

B.3. Reconstructing Topological Gaussian Surfels
To reconstruct the 3D objects by the topological Gaussian
surfels from the input image I, we first segment the object
image by the Segment Anything Model [33] and then we ap-
ply an image-to-mesh generation model InstantMesh [69].
In addition to the mesh, InstantMesh also generates multi-
view object images {Ii} at fixed viewpoints as intermediate

outputs. We bind a Gaussian surfel to each of the mesh ver-
tices. Specifically, we first initializing a Gaussian surfel at
a vertex with the vertex normal and the vertex color, and
then we optimize the Gaussian surfel parameters so that the
rendered images matches the multi-view images {Ii} via
differentiable rendering [32, 72].

However, up to here the topological Gaussian surfels
are still in a canonical coordinate frame. We need to reg-
ister each of objects back to the scene coordinate frame.
To do this, we first estimate the object orientation by
DUSt3R [61], and then we solve for a scale s and a 3D
translation T by least square to align the two coordinate
frames. This requires us to find 3D correspondences to form
the least square objective. We sample 3D points in the scene
coordinate frame by first sampling pixels in I within the ob-
ject segment, and then unprojecting the object pixels to 3D
with the estimated depth [31], similar to the background.
To sample 3D points in the object canonical frame, we sam-
ple object pixels from the image rendered from the object
representation with the DUSt3R-estimated pose. Each of
these pixels uniquely correspond to a 3D point in the object
canonical frame.

For stabler simulation, we also adopt the internal filling
technique as in PhysGaussian [67].

B.4. Material and Physics Solvers
We consider homogeneous uniform materials, i.e., m is
constant within an object. We follow Liu et al. [43] to esti-
mate the values of the material parameters m by a Vision-
Language Model (VLM) with optional manual adjustment
for physical plausibility during simulation.

Here we provide further complementary information on
each object material model and their solvers. We consider
homogeneous uniform materials, i.e., m is constant within
an object. To model an object, we follow Liu et al. [43] to
do a 6-way classification (rigid, elastic, cloth, smoke, liq-
uid, and granular) by a VLM, and estimate the values of the
material parameters m by the VLM with optional manual
adjustment for physical plausibility during simulation. The
material models and solvers are as follows.
Rigid body. We model a rigid object as a strictly unde-
formable mesh without internal links. The material proper-
ties m of a rigid object includes the density ρ and the fric-
tion coefficient k. Recall that our topological Gaussian sur-
fels are given by: Ot = {E,vt,p
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the edge matrix E ∈ {0, 1}NO×NO indicates the topologi-
cal connectivity of the surfels, and vt ∈ R3NO denotes the
velocity. They can be seen as a super-set of a mesh that
has E and p. Therefore, we can directly apply a rigid body
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Figure S1. Scenes with increasing complexity. The first scene
involves a rigid ball falling onto a rigid plane. The second re-
places the rigid ball with a soft ball. The third scene replaces the
rigid plane with water surface to include multi-physics. The fourth
scene include an object with complex geometry.

Figure S2. Quantitative results on the four stages (scenes with
increasing complexity).

Methods Imaging (↑) Aesthetic (↑) Motion (↑) Consistency (↑) PhysReal (↑)

Ours 0.695 0.610 0.995 0.217 0.700

Ours w/o RGB 0.673 0.601 0.993 0.212 0.670

Ours w/o flow 0.574 0.587 0.994 0.213 0.650

Coarse simulation 0.552 0.577 0.995 0.197 0.500

s1=19,s2=16 0.610 0.571 0.994 0.215 0.650

s1=23,s2=20 0.683 0.581 0.995 0.217 0.690

γ = 0.3 0.662 0.571 0.994 0.217 0.670

Table S1. Ablation study on conditioning signals and diffusion
hyper-parameters.

solver to simulate our rigid objects. We adopt a rigid body
solver based on shape matching [47]. At each simulation
time step, the rigid solver uses action forces to update the
dynamics attributes, and then detects collisions among rigid
objects and the background using connectivity information
E to resolve penetrations.
Elastic, liquid, and granular materials. We model these
materials with continuum mechanics and simulate them us-
ing a Material-Point-Method (MPM) solver [30], similar to
PhysGaussian [67]. The material properties m include the
density ρ, Young’s modulus E, and Poisson’s ratio ν. For
granular material, the material properties also include the
friction angle θ. The physics solver is built upon MPM [30],
a hybrid Eulerian-Langrangian method. It simulates based
on both particles and a spatial grid. As mentioned above,
we densely sample particles inside the object in addition to
the surface surfels. In each simulation time step, an MPM

solver computes the momentum of each object particle (sur-
fel) to update the dynamics attributes. In detail, the mo-
mentum of each particle is transferred to the grid within a
particle-to-grid step, to further compute the terms like de-
formation gradient. These updates are back propagated into
particles through a grid-to-particle process to update parti-
cle dynamics properties like position and velocity.
Cloth and smoke. We model smoke and cloth with only
particles and employ the Position-Based Dynamics (PBD)
solver [48] for these effects. The material properties m for
cloth includes density ρ and stretch/bending compliance p.
The material properties for smoke includes ρ and viscos-
ity coefficient µ. We also densely sample particles inside
smoke. Unlike MPM method, PBD method directly mod-
els the positions of each particle through a list of inequality
and non-equality constraints. In each time step, PBD solver
solves each constraint sequentially and directly update the
particle’s position which is then used to update the velocity.
The constraints for smoke include incompressibility [44];
the constraints for cloth include stretch and bending com-
pliance. We refer the read to Bender et al. [9] for more
information.

B.5. Simulation Parameters
Different solvers rely on the different sets of physical pa-
rameters. Here we provide a table of all the parameters we
set in the physical simulation process in Tab S2, also with
their default values. In simulation these parameters can be
roughly estimated with a VLM and optional manual adjust-
ment, as long as the simulation results are reasonable.

B.6. Rendering Simulated Dynamics
Upon physical simulation, we need to further map the simu-
lated outputs to the Gaussian surfels for rendering the coarse
dynamics. For rigid body objects, since each Gaussian sur-
fel is initialized from one mesh vertex and the rigid body
solver runs on the mesh representation, we can directly
update each surfel’s position with simulation results. For
particle-based MPM and PBD solvers, during the initial
sampling process, we record the mapping of each Gaussian
surfel to the nearest 10 sampled particles. At each simula-
tion step, we use the average of position updates of these
nearest particles to update the position of the corresponding
Gaussian surfel.



Parameter Default Value

General simulation
Step time 1e−2

Sub-steps number 10
Sampled particle size 1e−2

Gravity (0, 0,−9.8)

Rigid body solver
friction coefficient 0.1

MPM solver
Grid density 128
Elastic material Young’s modulus 3e5

Elastic material Poisson’s ratio 0.2
Liquid material Young’s modulus 1e7

Liquid material Poisson’s ratio 0.2
Granular material Young’s modulus 1e6

Granular material Poisson’s ratio 0.2
Granular material Friction angle 45

PBD solver
Cloth material stretch compliance 1e−7

Cloth material bending compliance 1e−5

Smoke material viscosity coefficient 0.1

Table S2. Simulation parameters and default values


