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A. Appendix
A.1. Motivation for DisCL’s Data Selection
When curating data for a training curriculum, real data
often aligns with the test distribution better but suffers from
deficiency, noise, low quality, or imbalance; Synthetic data
can potentially fix these problems but suffers from a large
distribution gap to the test. Our synthetic-to-real curriculum
is designed to combine the complementary strengths of
both data types and overcome their weaknesses. Unlike
previous methods using synthetic data with no real-image
guidance or a fixed guidance level, DisCL dynamically ad-
justs the real-image guidance level per training stage to gen-
erate a spectrum of synthetic-to-real samples that accelerate
learning progress and meanwhile progressively bridging the
distribution gap. Unlike pre-defined easy-to-hard curricula
on real data, DisCL’s data selection is adaptive to the training
dynamics, considers diversity and distribution gap, and is
optimized for achieving the greatest progress per stage.

A.2. Synthetic Data Generation with Image Guid-
ance

In this section, we visualize more generated images in (Phase
1) of our method with various levels of image guidance, for
two different classification tasks.
A.2.1. Generation Settings and Statistics
We provide the statistics for the synthetic data generation
within our paradigm on ImageNet-LT, CIFAR100-LT, iNatu-
ralist2018, and iWildCam, as shown in Table 5.
A.2.2. ImageNet-LT Synthetic Generation
Selection of Text prompts To improve model performance
on the minority classes, high-quality and diverse synthetic
samples are required. To achieve so, we follow the approach
in Fu et al. [10], and utilize publicly available GPT-3.5-turbo
to generate diverse prompts for these 1000 IN-LT classes.
We use the following prompt to query GPT-3.5-turbo for
generating descriptions for class X:

“Please provide 10 language descriptions for random
scenes that contain only the class X from the ImageNet-LT
dataset. Each description should be different and contain
a minimum of 15 words. These descriptions will serve as a
guide for Stable Diffusion in generating images.”

The sample-prompts generated by GPT-3.5-turbo are
listed in Table 6.

Selection of Images Guidance Levels We first analyze the
cosine similarity between synthetic images and real images,
as well as between synthetic images and text prompts. The
similarity score between synthetic images and real images

can be used to quantify the diversity introduced in the syn-
thetic images. As depicted in Fig. 6a, the similarity between
synthetic images and real images decrease as the guidance
level reduces, demonstrating the trend of increased diversity
in the data spectrum. However, the changes in the scores
are relatively small across varying guidance levels. Com-
bined with the visual cases for this dataset (examples shown
in Fig. 8), we observe that for images generated with high
guidance levels (� � 0.7), only minor details are modified
by the diffusion model, resulting in high similarity scores
above 0.85. However, we aim to provide more diverse syn-
thetic data to increase the model’s generalization on the class-
balanced test set. Including these highly similar images may
hinder the diversity and cause the model to overfit to specific
visual features, thereby negatively impacting its generaliza-
tion ability. Therefore, we select {0.0, 0.1, 0.3, 0.5} as the
interval of image guidance levels used in the training process
for this dataset.

Selection of CLIPScore Threshold We leverage the
widely used CLIPScore [18] to filter out poor-quality images
in the synthetic data. In this method, the CLIP cosine similar-
ity between synthetic images’ embeddings and text embed-
dings is computed to measure the alignment between images
and the corresponding classes provided in text prompts. For
the synthetic data generation for ImageNet-LT, we use a uni-
fied template that emphasizes the class information in text
prompts. Following Trabucco et al. [38], we use "a photo of
<class name>" to prompt the CLIP model and compute the
cosine similarity. We also consider the value of the filtering
threshold for synthetic data. Following previous work [33],
we set the threshold to 0.3 based on the distribution of sim-
ilarity scores and a review of generation quality, as shown
in Fig. 6b. We observe that a threshold of 0.3 effectively
filters out synthetic images with poor quality or mismatched
classes.

A.2.3. iWildCam Synthetic Generation
Selection of Text prompts Following previous work
[8, 38], we first define prompts for each class using the
template "a photo of <class>". However, the classnames in
iWildCam comprises of scientific names, which are usually
unseen/unknown concepts to the diffusion text encoder. For
example, "canis lupus" is the class name for "wolf" animal.
To address this, we replace the scientific names with their
common names and add a postfix "in the wild" in the prompt
to drive the generation of wild images. The final text prompt
we use is "a photo of <common name of class> in the wild".



Images’ Details ImageNet-LT CIFAR100-LT iNaturalist2018 iWildCam
Irb=100 Irb=50

No. of Hard Samples 1643 324 268 44956 8260
Number of Image Guidance Scales � 4 4 4 4 3
Number of Random Seed Per Image 8 8 8 4 8
Number of Generated Images 51917 2592 2144 179824 197756
Number of Generated Images After Filtering 24141 809 668 75234 90093
Acceptance Rate 46.50% 31.21% 31.16% 41.84% 45.56%

Table 5. Statistics about Generated Synthetic Data. Irb refers to the imbalance ratio used to sample CIFAR100-LT dataset.

(a) Similarity b/w synthetic images & its original real image. (b) Similarity b/w synthetic images & defined text prompt.

Figure 6. CLIP Cosine similarity score for ImageNet-LT Synthesis.

Selection of Images Guidance Levels Based on the gener-
ated data with multiple image guidance scales, we search for
effective image guidance scales for this task using CLIP co-
sine similarity scores between synthetic image embeddings
and real image embeddings. As shown in Fig. 7a, as the dif-
ference between real images and synthetic images increases,
the cosine similarity between image embeddings decreases
from � = 1 to � = 0.3. However, when the image guidance
continues to decrease to � = 0, the cosine similarity score
increases slightly. With low image guidance scales, the diffu-
sion model tends to generate images that heavily rely on text
information, maintaining only global information (such as
the color of the image background) in the synthetic data for
some images. This creates a distribution gap between these
synthetic data and real data that is too large for the model to
accurately compare the differences between the two images
using embedding representation. Additionally, based on the
analysis of the quality of synthetic images and to leverage
the difficulty of the features and the distribution gap between
synthetic and real data, we set the image guidance scales to
{0.5, 0.7, 0.9} for this task.

Selection of CLIPScore Threshold To filter out low-
quality images, we assess the CLIP cosine similarity scores
between synthetic image embeddings and corresponding text
embeddings for each class. We use the same prompt template

as in the generation process ("a photo of <common name for
animal> in the wild") to compute CLIPScore for synthetic
images. The distribution of CLIPScores is shown in Fig. 7b,
which reveals a distinct gap around 0.25. Combined with a
review of the quality of synthetic data, we set the threshold
to 0.25. Synthetic data with a CLIPScore lower than 0.25
are considered poor-quality samples.

A.2.4. Visualization
Visual Cases We provide additional visual examples of
synthetic data generated with multiple guidance levels and
text prompts for the ImageNet-LT and iWildCam datasets.
The results are visualized in Fig. 8 and Fig. 9. These exam-
ples demonstrate that the model can generate synthetic data
with various postures, backgrounds, and actions as the im-
age guidance level decreases. Particularly for ImageNet-LT
generation results, diverse prompts introduce more varied
features into low-guidance data. These diverse features en-
able the model to achieve better generalization on the target
distribution.

Failure Cases During generation, despite designing text
prompts and applying CLIPScore to filter to remove low-
quality data, some failure cases still occur in the synthetic
dataset. In this section, we discuss these failure cases encoun-
tered during the generation process. As shown in Fig. 10
and Fig. 11, the first failure case is caused due to the in-



Class Name Prompts
Grand Piano A grand piano sits elegantly in a sunlit room, its glossy finish reflecting the warm glow.

In a cozy living room, the grand piano adds a touch of luxury and sophistication to the
space.
The grand piano sits silently in a dimly lit room, waiting patiently for a skillful pianist to
bring it to life.
In a grand ballroom, the grand piano provides a majestic backdrop for a glamorous event.
A vintage grand piano exudes timeless elegance in a quaint parlor, filled with antique
charm.

Pufferfish A colorful pufferfish swimming gracefully in a crystal-clear ocean, surrounded by vibrant
coral reefs.
A group of playful pufferfish blowing bubbles and chasing each other in a sunlit under-
water cave.
A shoal of pufferfish moving in unison, creating a mesmerizing dance of synchronized
swimming in the deep sea.
A fierce pufferfish defending its territory from intruders, puffing up its body and display-
ing its sharp spikes as a warning.
A baby pufferfish following its larger parent closely, learning the ropes of survival in the
vast ocean ecosystem.

Table 6. Generated text prompts for ImageNet-LT classes

(a) Synthetic image & original real images. (b) Synthetic image & defined text prompt.

Figure 7. CLIP Cosine similarity score for iWildCam Synthesis.

ability to recognize objects in the original images. If these
objects are clearly obscured or hard-to-identify (e.g. second
case in Fig. 11 and first case in Fig. 10), diffusion models
cannot accurately identify the object or modify details for
generating diverse and useful data. For these seed images,
only synthetic data generated with a low-guidance scale can
achieve a CLIPScore higher than the threshold. However,
this approach compromises the smooth transition of data
from synthetic to real distribution. Even though the diffu-
sion model can generate images with a smooth transition
for most-of-the-cases, our quality-check on synthetic data
can constrain the feature extraction and alignment ability of
the CLIP model. For example, in second case of Fig. 10,
CLIPScore filters out the slightly modified but perceptually

useful images, containing prototypical class features.

A.3. Application of DisCL to Other Datasets and
Model Scale

To further assess the robustness of DisCL, we extend our ex-
periments to two additional widely used imbalanced datasets:
CIFAR-100-LT [6] and iNaturalist2018 [40]. For iNatural-
ist2018, we generate synthetic data following the same ap-
proach and settings used for the long-tail classification task
on ImageNet-LT. In the case of CIFAR-100-LT dataset, due
to the lower image resolution, we adjust the image guidance
scale to {0.5, 0.7, 0.9} so as to ensure high-quality synthetic
data generation. Visual examples of the generated data are
shown in Fig. 12 and 13. For CIFAR-100-LT, we evaluate



Image Guidance 𝛌: High → Low 𝛌=0𝛌=0.9
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A majestic American 
Staffordshire Terrier 
standing proudly in a lush 
green field, with the sun 
setting in the background.

A loyal American 
Staffordshire Terrier 
standing guard at the front 
door, alert and ready to 
protect its family from any 
intruders.
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A vibrant American 
robin perched on a 
tree branch, its red 
breast glowing in the 
sunlight.

A group of American 
robins bathing in a 
shallow puddle, 
splashing water 
everywhere in their 
joy.

Image Guidance 𝛌: High → Low 𝛌=0𝛌=0.9
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A soft bath towel 
hanging on a 
metal rack in a 
modern bathroom.

A fluffy bath towel 
neatly folded on a 
wooden shelf next 
to a bathtub.

Figure 8. Synthetic generation with various image guidance and random seeds based on ImageNet-LT.



Image Guidance 𝛌: High → Low 𝛌=0𝛌=0.9
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 SeedsA photo of <Ocelot> 

in the wild

Image Guidance 𝛌: High → Low 𝛌=0𝛌=0.9
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 SeedsA photo of <African 
bush elephant> in the 
wild

Image Guidance 𝛌: High → Low 𝛌=0𝛌=0.9

R
andom

 SeedsA photo of 
<grey-cowled wood 
rail> in the wild

Figure 9. Synthetic generation with various image guidance and random seeds based on iWildCam.

the performance of DisCL under different imbalance ratios
(50 and 100). Additionally, we expand our model evaluation
to a larger scale, ResNet-34 (widely adopted for ImageNet)
with the same experimental settings of DisCL as before. As
evident from Table 2 and Table 3, our results demonstrate
that DisCL achieves a notable improvements in overall top-1
accuracy (e.g., +1–3.3% over baselines) and few class perfor-
mance (e.g., +3-8% for tail classes) across both datasets. We
also notice that combining a class-reweighting loss (BS) with
DisCL causes an oversaturation in tail-class signals, causing
the model to neglect many classes during the training. This
suggests that reweighting and mixing synthetic with real data
address different aspects of class imbalance; aligning with
prior works, [1] and [35]. Notably, the top-1 accuracy gains
persist when scaling the model to ResNet-34, as demon-

strated for CIFAR-100-LT in Table 7 and ImageNet-LT in
Table 8. This underscores the flexibility of our proposed
DisCL method across different datasets and model scales.

A.4. Training with Curriculum Learning
A.4.1. Long-Tail Learning with Non-Adaptive Strategy
For long-tail classification, we propose a non-adaptive cur-
riculum learning strategy that starts with the lowest guidance
and progressively increases to the highest guidance within
the defined interval ⇤. We employ a linear scheduler to ad-
just the guidance levels during training, allowing the model
to train with data from various guidance levels for equal
durations. Furthermore, the test set of ImageNet-LT is in-
distribution to its training data; unlike the training data, it is a
class-balanced set. To mitigate the potential negative effects
of the distribution gap between synthetic and real data, all



Image Guidance 𝛌: High → Low 𝛌=0𝛌=0.9
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A plush bath towel 
thrown over a 
wooden stool by a 
glass shower in a 
minimalist bathroom.

A luxurious bath 
towel hanging on a 
chrome hook in a 
sleek hotel bathroom.

Image Guidance 𝛌: High → Low 𝛌=0𝛌=0.9
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An acorn squash 
sitting on a 
wooden table with 
its vibrant green 
color standing out.

A whole acorn 
squash cut in half, 
revealing its bright 
orange flesh and 
seeds inside.

Image Guidance 𝛌: High → Low 𝛌=0𝛌=0.9
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A pair of European 
polecats engage in a 
fierce yet playful 
wrestling match on a 
sandy beach.

The European polecat 
elegantly climbs a 
tree, showing off its 
agility and grace.

Figure 10. Failure cases for ImageNet-LT synthetic generation



Image Guidance 𝛌: High → Low 𝛌=0𝛌=0.9
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andom
 SeedsA photo of <vulturine  

guineafowl> 
in the wild

Image Guidance 𝛌: High → Low 𝛌=0𝛌=0.9
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andom

 SeedsA photo of <Impala> 
in the wild

Image Guidance 𝛌: High → Low 𝛌=0𝛌=0.9
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andom

 SeedsA photo of <Cattle 
Cow Bull> 
in the wild

Figure 11. Failure cases for iWildCam synthetic generation

CIFAR-100-LT (Imbalance Ratio=100) CIFAR-100-LT (Imbalance Ratio=50)
Method Curriculum Many Medium Few Overall Many Medium Few Overall
CE N/A 51.71 23.51 5.05 27.7 52.14 29.97 10.7 32.04
CE + DisCL Diverse to Specific 49.83 23.26 7.9 28.4 51.83 29.12 12.64 32.18
BS N/A 46.23 28.0 13.13 29.79 46.48 33.48 22.1 34.6
BS + DisCL Diverse to Specific 44.9 27.4 16.8 30.3 45.51 32.08 23.99 34.5

Table 7. Accuracy (%) of ResNet-34 on CIFAR-100-LT classification task with imbalance ratios of 100 and 50, highlighting the best
accuracy in bold for overall and class categories (many, medium, and few).

the hard tail samples from original data are involved into
training at all times. Furthermore, with DisCL, number of
samples for tail classes increases along with the introduction
of synthetic data at each stage, however the ratio of tail-to-
nontail samples is still very skewed. To preserve a constant
imbalance-ratio throughout all training stages and experi-
ments, we undersample the non-tail samples at "each stage"

so that ratio of tail-samples to non-tail samples matches the
proportion of tail classes to non-tail classes present in the
original data (13.6%).

All experiments are conducted based on this proportion
setting. Complete strategy details are covered in Algo-
rithm 1.



ImageNet-LT
Method Curriculum Many Medium Few Overall
CE N/A 63.01 35.90 10.10 42.98
CE + CUDA N/A 62.78 36.91 11.92 43.34
CE + DisCL Diverse to Specific 63.54 36.93 13.64 44.26
BS N/A 62.78 36.91 11.92 43.34
BS + CUDA N/A 57.16 44.5 30.49 47.33
BS + DisCL Diverse to Specific 58.82 45.21 32.53 48.42

Table 8. Accuracy (%) of ResNet-34 on ImageNet-LT classification task, highlighting the best accuracy in bold for overall and class
categories (many, medium, and few).
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Image Guidance 𝛌: High → Low 𝛌=0.5𝛌=0.9

Figure 12. Synthetic generation with various image guidance and random seeds based on CIFAR100. Sample Prompt: (1) A bright sunflower
standing tall in a field, basking in the warm sunlight of a summer day. (2) A majestic whale breaches the surface of the deep blue ocean,
sending a spray of water into the air.

A.4.2. Learning from Low-Quality Data with “Adaptive
Curriculum” Strategy

An approximation method to assess the effectiveness of sam-
ples in helping model achieve greatest progress on and fastest

Algorithm 1: Training with non-adaptive curriculum
strategy

Input: Image guidance levels ⇤ = {�i | �i 2 [0, 1]},
Non-hard samples Dnh = {(x(j), y(j),�(j) = 1)}Nj=1,
Spectrum of syn-to-real data
S = {(x0(j), y(j),�(j)) | �(j) 2 ⇤}Mj=1,
Original hard samples
Dh = {(x(j), y(j),�(j) = 1) | (x(j), y(j),�(j)) 2 S},
Total training epochs E, curriculum cutoff ECL,
Predefined linear guidance schedule
G = {�1,�2, . . . ,�e, . . . ,�ECL}
Output: Trained model f✓
Initialize: Pretrained model f✓

1 for e  ECL do
2 �e = G(e)
3 Extract S�e = {(x0(j), y(j),�(j)) | �(j) = �e}
4 Gather new training set De = S�e [Dnh [Dh

5 Finetune model f✓ with De

6 end
7 for ECL < e  E do
8 Gather new training set De = Dnh [Dh

9 Finetune model f✓ with De

10 end

learning face is introduced by DoCL [46] as shown in Eq 4.

Ex2D,x⇠Dhy � f(x),
@f(x)

@t
|Si

⇡ 1

|D|
X

j2V
hy(j) � f(x(j)),

@f(x(j))

@t
|Di

(4)

where D is the training distribution and x 2 D is a set of
finite samples randomly sampled from the original distri-
bution D. V denotes the subset of samples from S. Here,
y and f(x) denotes the target-class and sample prediction.
hy�f(x), @f(x)

@t |Vi represents the project of residual y�f(x)

on the model dynamics @f(x)
@t |V . This equation indicates that

when trained with subset V , the expected progress E of sam-
ples in the original training dataset can be approximated by
the progress of samples on subset V achieved via training on
the set D.

For learning from low-quality data, we adopt DoCL and
implement an adaptive curriculum strategy to select the syn-
thetic data with best guidance level for each training stage.
We showcase the implementation in Algorithm 2, wherein
we preserve i for indexing the guidance level in ⇤ and j for
indexing the sample in a given dataset. Before the training
process, we randomly select samples from the spectrum for
each guidance level in ⇤ and mark it as guidance validation
set V for progress evaluation. This set has zero overlap with
the training data Dall. At each training stage, we randomly
sample a set D (termed as random-real set) from the training



Image Guidance 𝛌: High → Low 𝛌=0𝛌=0.9
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A Cascade Golden-mantled 
Ground Squirrel foraging 
for food amongst the rocks 
and tall grasses in its 
natural habitat. 

The agile Cascade 
Golden-mantled Ground 
Squirrel climbing a tree 
branch to reach the tasty 
fruits hanging above.

Figure 13. Synthetic generation with various image guidance and random seeds based on iNaturalist 2018.

dataset Dall. Before selecting the guidance level, we train
the model on dataset D and evaluate the progress (in terms
of classifier’s prediction score) achieved on samples of each
subset Vi corresponing to a given guidance �i. We then
select the �i with the highest progress to gather synthetic
data and combine it with other non-hard samples from the
original training data for the current training stage. This tech-
nique encourages the model to adaptively select the most
informative guidance for the current training stage. At the
end of the curriculum-training, to alleviate the negative ef-
fect of the distribution gap between synthetic data and real
data for this task, we keep finetuning the model with real
data for a short period. The steps of algorithm are detailed
in Algorithm 2.
A.5. Hyperparameters for Synthetic Generation

and Model Training
The values of all hyperparameters used for synthetic data
generation with diffusion model and curriculum learning
strategy are listed in Table 9.

For ImageNet-LT, we implement baselines based on the
codebase and the pretrained model from LDMLR. We also
re-implement CUDA baseline from this codebase, contain-
ing some missing models. We use the same hyper-parameter
settings as listed in the CUDA paper. For FLYP, we imple-
ment baseline models with FLYP codebase and leverage the
available pretrained model from Open CLIP.
A.6. Computational Requirements for Synthetic

Generation
For computational requirements of offline generation, 1 RTX
A5000 GPU is used to generate synthetic images. For time
efficiency, It took 10 seconds to generate a full spectrum
(6 image guidance levels) of synthetic images for each real
image with resolution=480⇥ 270.
A.7. Further Discussion on Experiment Results
In this section, we analyze the results of each guidance level
under Fixed Guidance experiment to observe the effect of

Algorithm 2: Training with adaptive curriculum strategy
Input: Image guidance levels ⇤ = {�i | �i 2 [0, 1]},
Non-hard samples Dnh = {(x(j), y(j),�(j) = 1)}Nj=1,
Syn-to-real spectrum data
S = {(x0(j), y(j),�(j)) | �(j) 2 ⇤}Mj=1,
Combined training data
Dall = Dnh [ {(x0(j), y(j),�(j)) | �(j) = 1},
Guidance validation set
V = {(x0(j), y(j),�(j)) | �(j) 2 ⇤}mj=1,
Total training epochs E, curriculum cutoff epoch ECL,
size of real-random set |D|
Output: Trained model f✓
Initialize: Pretrained model f✓
/* Note: V has no overlap with Dall */

1 for e  ECL do
2 Compute true-class probability pbef of model f✓ on V
3 Sample a random-real set D from Dall

/* contains only real data */
4 Train model f✓ with D
5 Compute true-class probability paft of model f✓ on V
6 �e  argmax�i2⇤ (paft(�i)� pbef(�i))

7 Extract S�e = {(x0(j), y(j),�(j)) | �(j) = �e}
8 Form training set De = S�e [Dnh

9 Train model f✓ with De

10 end
11 for ECL < e  E do
12 Train model f✓ with Dall

13 end

different image guidance levels on the classifier’s perfor-
mance. During the training process, synthetic data generated
from only a specific guidance level combined with original
real data is presented to the model. The ablation numbers
are shown in Fig. 14.

For the iWildCam dataset, data generated with text-only
guidance (� = 0) has the largest distribution gap between



Hyperparameter Name Value

Sy
nt

he
tic

G
en

er
at

io
n Text Guidance Scale w 10

Noise Scheduler DDIM
Stable Diffusion Denoising Steps 1000
Stable Diffusion Checkpoint stabilityai/stable-diffusion-xl-refiner-1.0
CLIP Filter Model openai/clip-vit-base-patch32
Filtering Threshold for iWildCam 0.25
Filtering Threshold for ImageNet-LT 0.30
GPU Used Nvidia rtx5000 with 24GB
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Level of Image Guidances � {0, 0.1, 0.3, 0.5, 1.0}
CLIP Filtering Threshold 0.3
Batch Size for ResNet-10 128
Learning Rate 1e-3
Optimizer Adam
Scheduler Cosine
Training Epoch 65
Training Epoch for Curriculum Learning 60
GPU Used Nvidia rtx5000 with 24GB

iW
ild

C
am

Level of Image Guidances � {0.5, 0.7, 0.9, 1.0}
CLIP Filtering Threshold 0.25
Size of Dataset D 30000
Size of Guidance Validate Dataset S 2000
Batch Size for CLIP ViT-B/16 256
Batch Size for CLIP ViT-L/16 200
Learning Rate 1e-5
Optimizer AdamW
Scheduler Cosine with Warmup
Warmup Step 500
Training Epoch 20
Training Epoch for Curriculum Learning 15
GPU Used 2 Nvidia A100 with 80GB

Table 9. Hyperparameters and their values

synthetic and real data, and it also showcases lowest Out-
of-Distribution (OOD) performance. As the guidance scale
increases, this distribution gap diminishes, and the OOD
F1 score consistently improves. This outcome aligns with
the visually observed reduction in distribution differences
between generated and real images.

Conversely, the trend seen with ImageNet-LT diverges
from above. In long-tail classification, we aim to increase
data diversity while keeping the distribution gap small. As
detailed in Appendix A.2.2, on one hand, generating syn-
thetic data that closely resemble real data further reduces the
diversity, and generating synthetic data far from real distribu-
tion can offer diversity but hurt OOD performance. In case
of ImageNet-LT, we observe that more diverse synthetic data
tends to significantly improve the classifiers’ generalization.

Inspired by these observations, we tailor our guidance
scales intervals according to the task-at-hand.

A.8. Improvement on Worst-k classes: Balanced
Softmax (BS) v/s DisCL with BS [29]

While DisCL’s average gain over Balanced Softmax Base-
line(BS) is +2.07%, it improves BS’s worst-k class accuracy
by 4.5%–7.6%, verifying our targeted advantage on the most
difficult classes—precisely where strong baselines struggle.
It demonstrates that DisCL complements existing methods,
improving performance where it matters most, even com-
pared with strong baselines.

k 10 50 100 150 200

AccBS+DisCL � AccBS 7.6% 6.0% 5.7% 5.2% 4.5%

Table 10. Improvement in Accuracy on Worst-k classes in INLT.

A.9. Societal Impact
Our proposed method is beneficial for diverse fields, where
inadequate quantity and low quality of data is common, e.g.
medical domain. The synthetic data generation, as followed
by DisCL approach can reduce the need for extensive data



Figure 14. Effect of Image Guidance (mixing syn+real). All-level experiments use the synthesis samples from all guidance scales selected
for each task. 0.5 refers to only using synthetic data with guidance level � = 0.5 for fine-tuning. Left: results on iWildCam. Right: results
on ImageNet-LT

collection, therefore mitigating the ethical concerns related
to data-privacy. Overall, our method DisCL can democ-
ratize the access of effectively training ML models in the
low-resource environments. However, by leveraging the pre-
trained generative models, the potential biases of models can
perpetuate into the synthetic data and eventually affect the
sensitive real-world applications consuming this data, such
as medical diagnosis, law enforcement etc.


