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Appendix

1. Experiment Settings

We use ViT-S/16 as the pretraining model, freezing its
weights during pretraining and jointly training it with STP
during fine-tuning stage to adapt to downstream tasks.

1.1. Pre-training

Our pretraining setup primarily follows the methodology
outlined in previous work [14]. The hyperparameters are
detailed in Tab. 1(a). Specifically, the learning rate is linearly
scaled with the batch size, i. e., lr = base lr × batch size /
256.

1.2. Object Recognition

We fine-tuned our STP on the N-ImageNet [7], N-Caltech101
[9], N-Cars [10], and CIFAR-10-DVS [4] datasets to evaluate
its performance on the object recognition task (Tab. 1(b)).
For the N-Caltech101, N-Cars, and CIFAR-10-DVS datasets,
we adjusted the final classification head of the VIT model to
match the number of classes in these datasets. Additionally,
since the N-Caltech101 and CIFAR-10-DVS datasets do
not have predefined training and testing splits, we followed
previous work [14] and randomly split these datasets, using
80% for training and 20% for testing.

1.3. t-SNE Visualization Analysis

In Fig. 4 of maintext, we present the results of the t-SNE vi-
sualization analysis. To make the t-SNE analysis more chal-
lenging and better highlight the advantages of our method,
we selected 10 visually similar classes (all belonging to the
bird category) from the N-ImageNet test set [7], as detailed
in Tab. 2. We first reduced the dimension of the ViT classi-
fication token from 384 to 50 using PCA, then projected it
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Table 1. Hyperparameters for pretraining (a) and for finetuning on
the object recognition task (b).

(a) Pre-training

Hyperparameters Value

optimizer AdamW
base lr 1.5× 10−4

weight decay 3× 10−2

batch size 512
epochs 100
warmup epochs 20
lr scheduler cosine
label smoothing 0.8

(b) Fine-tuning on the object recognition task

Hyperparameters N-ImageNet N-Caltech101 N-Cars CIF10

optimizer AdamW AdamW AdamW AdamW
base lr 1× 10−4 2.5× 10−4 1.25× 10−4 2.5× 10−4

weight decay 1× 10−1 5× 10−2 5× 10−2 3× 10−1

batch size 256 512 512 512
epochs 20 100 100 100
warmup epochs 5 20 20 20
lr scheduler cosine cosine cosine cosine
gradient clipping 5 5 5 5
drop path rate 1× 10−1 1× 10−1 1× 10−1 1× 10−1

onto a 2D plane using the t-SNE algorithm for visualization.

1.4. Semantic Segmentation
For the semantic segmentation task, we conducted two sets
of experiments. In the first set, we pretrained the model on
N-ImageNet [7] and then trained and tested it on the DDD17
[3] and DSEC [5] datasets. To ensure a fair comparison with
ECDDP [15], we conducted a second set of experiments
by pretraining STP and the image-pretrained model on the
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Table 2. Selected Categories and Their Names for t-SNE Analysis.

Classes Name

n01530575 goldfinch
n01531178 house finch
n01532829 snowbird
n01534433 indigo bird
n01537544 American robin
n01558993 bulbul
n01560419 jay
n01580077 magpie
n01582220 chickadee
n01592084 water ouzel

E-TartanAir [15] dataset (hyperparameters detailed in Tab.
3) and finetuning it on downstream tasks. Following ECDDP
[15], we generated the E-TartanAir dataset by performing
frame interpolation on TartanAir using EMA-VFI [17], fol-
lowed by event synthesis with V2E [6]. Ten scenes from the
TartanAir [12] dataset were selected for this process (see Tab.
5 for scene details), and the same V2E hyperparameter set-
tings as ECDDP were used. During pretraining, the weights
of the image-pretrained model were frozen, while all weights
were optimized during fine-tuning. For the semantic seg-

Table 3. Pretraining hyperparameters on the E-TartanAir [15]
dataset.

Hyperparameters E-TartanAir

optimizer AdamW
batch size 512
epochs 100
lr 1× 10−3

lr scheduler cosine
warmup epochs 10
weight decay 4× 10−2

momentum 0.992
momentum scheduler cosine
drop path rate 1× 10−1

mentation task, we embedded the UperNet decoder [1, 13]
into the pretrained model and fine-tuned it alongside STP on
the dataset. We trained using cross-entropy and Dice loss
[11], and evaluated performance with the mean Intersection
over Union (mIoU) metric. Table 4 shows our finetuning
hyperparameters. We present more semantic segmentation
results on the DSEC dataset in Figure 1.

Additionally, in STP, the model generates hierarchical fea-
tures, which can be utilized for semantic segmentation tasks.
To leverage these features, we apply a linear projection layer
to transform them into the same embedding dimension and

Table 4. Fine-tuning hyperparameters on the DDD17 [3] and DSEC
[5] datasets.

Hyperparameters DDD17 DSEC

optimizer AdamW AdamW
lr 1× 10−3 1× 10−3

weight decay 5× 10−2 5× 10−2

batch size 32 32
epochs 100 100
warmup epochs 10 10
lr scheduler cosine cosine
gradient clipping 3 3
drop path rate 1× 10−1 1× 10−1

Table 5. Scene details of the E-TartanAir [15] dataset.

Scene name

amusement
carwelding
endofworld

japanesealley
office
ocean

oldtown
office2

seasonsforest
seasidetown

connect them to the backbone (w/ STP). The specific imple-
mentation is illustrated in Fig. 2. This approach effectively
provides more detailed temporal information, significantly
improving the performance of semantic segmentation.

1.5. Optical Flow Estimation

Table 6. Fine-tuning hyperparameters on the MVSEC [18] datasets.

Hyperparameters MVSEC

optimizer AdamW
lr 1× 10−3

weight decay 1× 10−4

batch size 256
epochs 100
warmup epochs 10
lr scheduler cosine
gradient clipping 1

Similar to the semantic segmentation task, we added
an additional experiment for fair comparison with ECDDP
[15]. In this experiment, we pretrained the model on the E-
TartanAir [15] dataset and fine-tuned it on the MVSEC [18]



Figure 1. Examples of semantic segmentation on the DSEC dataset. Columns 1/4 show event images, columns 2/5 show segmentation
results, and columns 3/6 show the ground truth.

O
v

e
rla

p
 P

a
tc

h

E
m

b
e

d
d

in
g

B
lo

c
k

 1

T
e

m
p

o
ra

l

T
ra

n
s

fo
rm

e
r

O
v

e
rla

p
 P

a
tc

h

E
m

b
e

d
d

in
g

T
e

m
p

o
ra

l

T
ra

n
s

fo
rm

e
r

O
v

e
rla

p
 P

a
tc

h

E
m

b
e

d
d

in
g

Re Re

B
lo

c
k

 2

B
lo

c
k

 3

B
lo

c
k

 4

Hierarchical Feature for downstream tasks

Spatiotemporal Information Fusion Prompting

t

TECM

Pre-trained Image Model Backbone

Re

Figure 2. The framework for utilizing the Hierarchical Features from STP for semantic segmentation.

dataset. For models pretrained on N-ImageNet, we attached
a UperNet decoder [1, 13] to our pretrained network for opti-
cal flow estimation. Additionally, inspired by previous work
[14], we added a patch embedding layer as used in [16] to
the ViT. We use the L1 loss for supervision and train using
the MVSEC dataset [18] setup defined by [14]. Detailed
optimization settings can be found in Tab. 6.

For models pretrained on the E-TartanAir dataset, we
adopted the TMA architecture [8], consistent with ECDDP
[15]. Specifically, we utilized four transformer blocks from
the image-pretrained model as the encoder for TMA. The
weights of these blocks were frozen during the pretrain-
ing stage and trained during fine-tuning. The pretraining
hyperparameters on E-TartanAir are detailed in Tab. 3. Sub-
sequently, we fine-tuned the model on the MVSEC dataset,
with dataset splits following the protocols outlined in [2, 17].
The finetuning hyperparameters on MVSEC are identical to
those listed in Tab. 6. The visual results of the optical flow
estimation can be seen in Figure 3.

Table 7. Ablation studies on the Model Hyperparameters and
Number of Event Stream Segments T .

(a) Kernel size of OPE

{k1, k2, k3} #Params Ft. Acc

{6, 4, 4} 1.1 M 68.11
{8, 6, 6} 2.2 M 68.87
{10, 8, 8} 3.7 M 69.01

(b) Ablation of T

T Pr. Acc Ft. Acc

3 65.69 68.65
5 66.01 68.87
7 66.13 68.96

2. Ablation Studies

Ablation Study on Model Hyperparameters. We fur-
ther explored the impact of the kernel size in the Over-
lap Patch Embedding on model performance, as this pa-



Figure 3. Visualization of the optical flow estimation results on MVSEC dataset. Columns 1/4 show event images, columns 2/5 show optical
flow estimation results, and columns 3/6 show the ground truth.

rameter determines the size of the local receptive field dur-
ing event data encoding. In our previous training, we set
{k1 = 8, k2 = 6, k3 = 6}. As shown in Tab. 7(a), the ker-
nel size has a significant effect on the parameter count of
the STP model and also influences its performance on down-
stream tasks. This demonstrates that increasing the local
receptive field can effectively alleviate the overfitting caused
by data sparsity.

Ablation Studies on Number of Event Stream Seg-
ments T . Segmenting the event stream effectively preserves
its temporal information. However, increasing the number
of segments also increases the computational cost, impact-
ing the model’s runtime performance. Following the ap-
proach used in Voxid grid [19], we set T = 5 (Additional
visualizations of DES and TECM are provided in Fig. 4).
Additionally, we explored the impact of different values of
T on STP performance. The results are shown in Table
7(b).
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Figure 4. The representations of event data (ECM and TECM) and their corresponding RGB images are shown, with DES generated from
TECM through STP. For ease of visualization, we overlay positive and negative events.
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