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6. Proof of GBR Resolving
We demonstrate that a lighting system with known 3D
structure, defined by its 3D light positions, can resolve the
GBR ambiguity up to the classic convex/concave reflection,
provided certain generic conditions on the light positions
are met.

Theorem 1. Let P be a set of at least seven light source
positions in R3, represented in homogeneous coordinates as
p = [x, y, z, 1]⊤. The corresponding light vector for each
source is s = u · [x, y, z]⊤, where u > 0 is a light-specific
scalar. Suppose the following relation holds for every p ∈
P : [

v ·Gs
1

]
=

[
R t
0⊤ 1

]
p

where:
1. v ̸= 0 is a scalar that may vary for each light source.
2. R is a 3×3 orthogonal matrix (R ∈ O(3), detR = ±1)

and t is a 3× 1 translation vector.
3. G is a 3× 3 GBR transformation matrix:

G =

 1 0 0
0 1 0
m n p

 .

4. The set P is in general position, meaning the points do
not all lie on any quadric surface passing through the
origin with equation:

π1x
2 + π2xy + π3xz + π4x+ π5y

2 + π6yz + π7y = 0

where not all πi are zero.
Under these conditions, the only solutions for t is t =

0, and the only solutions for (R,G) are the four coupled
pairs:

#Equal contributions. ∗Corresponding author.

• (R,G) = (diag(1, 1, 1),diag(1, 1, 1)),
• (R,G) = (diag(1, 1,−1),diag(1, 1,−1)),
• (R,G) = (diag(−1,−1, 1),diag(1, 1,−1)),
• (R,G) = (diag(−1,−1,−1),diag(1, 1, 1)).

Remark. A common physical constraint in photometric
stereo is that the lights must remain in the same hemisphere
relative to the scene (i.e., always in front of the camera,
z > 0). This implies that the z-component of a light’s posi-
tion must have the same sign in both the true and ambigu-
ous configurations. This prunes the four solutions to two:
the first and the third solutions.

Proof. Let R =

a d g
b e h
c f i

 and t =

jk
l

.

For a point p = [x, y, z, 1]⊤, the left-hand side becomes:

Gs = u

 1 0 0
0 1 0
m n p

xy
z

 = u

 x
y

mx+ ny + pz

 .

Thus:[
v ·Gs

1

]
= [vux, vuy, vu(mx+ ny + pz), 1]⊤.

The right-hand side gives:

[
R t
0⊤ 1

]
=


a d g j
b e h k
c f i l
0 0 0 1



x
y
z
1

 =

[xa+ yd+ zg + j, xb+ ye+ zh+ k, xc+ yf + zi+ l, 1]⊤.

Equating the vector components of both sides gives three



scalar equations that must hold for each point in P :

vux = xa+ yd+ zg + j, (18)
vuy = xb+ ye+ zh+ k, (19)

vu(mx+ ny + pz) = xc+ yf + zi+ l. (20)

The scalar vu varies with each light source and must be
eliminated to obtain constraints on the matrices. We can
isolate vu from (18) and (19) (assuming at least one point
has x ̸= 0 and y ̸= 0, which is guaranteed by the general
position condition) by cross-multiplication. From equations
(18) and (19), multiplying (18) by y and (19) by x:

vuxy = y(xa+ yd+ zg + j),

vuxy = x(xb+ ye+ zh+ k).

Equating the right-hand sides:

y(xa+ yd+ zg + j) = x(xb+ ye+ zh+ k).

Rearranging the terms produces the equation of a quadric
surface:

bx2 +(e− a)xy+hxz+ kx− dy2 − gyz− jy = 0. (21)

This equation holds for every point in P and passes through
the origin (0, 0, 0) (substituting x = y = z = 0 yields
0 = 0).

Note that this quadric has a special form: it contains no
z2 or standalone z terms, which is a direct consequence of
our elimination process.

By the theorem’s premise, the derived quadric (21)
is precisely of the form excluded by the general posi-
tion condition. The vector of its coefficients is π =
[b, e − a, h, k,−d,−g,−j]⊤. For each point pi =
[xi, yi, zi, 1]

⊤ ∈ P , we obtain a linear constraint:

[x2
i , xiyi, xizi, xi, y

2
i , yizi, yi]π = 0.

Stacking these constraints for seven points yields the ho-
mogeneous system Mπ = 0, where M is a 7 × 7 matrix
with rows [x2

i , xiyi, xizi, xi, y
2
i , yizi, yi].

Since the seven or more points in P do not lie on such a
surface (unless it is trivial), the coefficients must all be zero,
i.e., π = 0, therefore,

b = 0, e− a = 0, h = 0, k = 0, d = 0, g = 0, j = 0.

This simplifies our matrices to:

R =

a 0 0
0 a 0
c f i

 , t =

00
l

 .

Since R ∈ O(3) is orthogonal, we have R⊤R = I3.
Computing the rows: Row 1: [a, 0, 0] has norm |a| = 1, so
a = ±1.

Row 2: [0, a, 0] has norm |a| = 1 (confirmed).
Row 3: [c, f, i] must have unit norm and be orthogonal

to rows 1 and 2:
• Orthogonality conditions:

– With row 1: ac + 0 · f + 0 · i = 0 ⇒ c = 0 (since
a ̸= 0).

– With row 2: 0 · c + af + 0 · i = 0 ⇒ f = 0 (since
a ̸= 0).

• Unit norm constraint: c2+f2+ i2 = 02+02+ i2 = 1 ⇒
i = ±1.
Therefore: R = diag(a, a, i) where a, i ∈ {−1, 1}.
Now we use the simplified forms of R and t in the initial

scalar equations. From equation (18) with d = g = j = 0:
vux = ax.

This yields vu = a for points with x ̸= 0 or y ̸= 0.
Substituting vu = a, c = f = 0, and the simplified R into
equation (20):

a(mx+ ny + pz) = zi+ l.

Rearranging gives the equation of a plane:

amx+ any + (ap− i)z − l = 0.

This equation must hold for all points in P . However, the
points in P cannot be coplanar. If they were, they would
lie on a plane Ax+ By + Cz +D = 0. This would imply
they also lie on the quadric surface defined by x(Ax+By+
Cz+D) = Ax2 +Bxy+Cxz+Dx = 0, which is one of
the forms forbidden by the general position condition.

Since the points are not coplanar, the only way the planar
equation can hold for all of them is if all its coefficients are
zero:
• am = 0 =⇒ m = 0 (since a ̸= 0),
• an = 0 =⇒ n = 0 (since a ̸= 0),
• ap− i = 0 =⇒ p = i/a = ia (since a2 = 1),
• −l = 0 =⇒ l = 0.

For points with x = y = 0 (if any), consistency is
verified after deriving the coefficients: substituting into
(20) gives vup = i + l/z, but after zeroing coefficients
(m = n = 0, p = ia, l = 0), we obtain vu = a, con-
sistent with other regions.

This fully determines the parameters of G =
diag(1, 1, ai) and t = 0.

We have R = diag(a, a, i) and G = diag(1, 1, ai)
where a, i ∈ {−1, 1}.

The four possibilities are:
• (a, i) = (1, 1): R = diag(1, 1, 1), G = diag(1, 1, 1),
• (a, i) = (1,−1): R = diag(1, 1,−1), G =
diag(1, 1,−1),

• (a, i) = (−1, 1): R = diag(−1,−1, 1), G =
diag(1, 1,−1),

• (a, i) = (−1,−1): R = diag(−1,−1,−1), G =
diag(1, 1, 1).



Existence of general position point sets.
To ensure the theorem is not vacuous, we must show

that a set of points P satisfying the general position con-
dition exists. The condition requires that the only solution
to Mπ = 0 is π = 0, where M is the 7 × 7 matrix whose
rows are [x2

i , xiyi, xizi, xi, y
2
i , yizi, yi] for the seven points.

This is equivalent to showing that we can find 7 points such
that M is invertible.

We can construct such a set:
1. Choose 5 points on the plane z = z0 (with z0 ̸= 0).

Let their (x, y) coordinates be five points on a circle that
does not pass through the origin. Let π = [π1, . . . , π7]

⊤

be the coefficient vector of the forbidden quadric. On
this plane, any quadric of our form becomes:

π1x
2+π2xy+π5y

2+(π3z0+π4)x+(π6z0+π7)y = 0.

This is a conic section in the xy-plane passing through
the origin. However, five points uniquely define a conic.
The unique conic passing through our five chosen points
is the circle we constructed, which does not pass through
the origin. This is a contradiction unless all the coeffi-
cients of the conic are zero. Therefore:

π1 = π2 = π5 = 0,

π3z0 + π4 = 0 =⇒ π4 = −π3z0,

π6z0 + π7 = 0 =⇒ π7 = −π6z0.

This means that for any quadric of the forbidden form to
pass through these five points, its equation must simplify
to: π3xz − π3z0x + π6yz − π6z0y = 0, which can be
factored as (π3x + π6y)(z − z0) = 0. This is satisfied
for our first five points, as z − z0 = 0.

2. Choose 2 additional points, p6 and p7, on a different
plane (e.g., z = z1, where z1 ̸= z0 and z1 ̸= 0). For
these points, z − z0 ̸= 0, so the equation reduces to
π3x+ π6y = 0:

π3x6 + π6y6 = 0,

π3x7 + π6y7 = 0.

We can choose p6 and p7 such that their projection
vectors [x6, y6]

⊤ and [x7, y7]
⊤ are linearly independent

(i.e., not collinear and not the zero vector). This ensures
that the only solution to the 2 × 2 system above is the
trivial one: π3 = 0 and π6 = 0. Substituting back, we
find π4 = −π3z0 = 0 and π7 = −π6z0 = 0.
This construction forces all coefficients π1, . . . , π7 to be

zero. Therefore, the only quadric of the specified form pass-
ing through these seven points is the trivial one, meaning
the points satisfy the general position condition. Such sets
exist, and the proof is complete.

7. More Implementation Details
7.1. Lighting Configurations
We designed two configurations with known relative geom-
etry but unknown global pose to resolve the UPS ambiguity.

Case 1: Coaxial dual-ring lights. This configuration
uses two concentric rings of lights with known radii r1 > 0
and r2 > 0 and a known axial separation ∆d ̸= 0. The
lights’ canonical positions in the local frame are:

pi(t) = [ri cos t, ri sin t, zi], (22)

where z1 = 0, z2 = ∆d denotes the axial offset, and t ∈
[0, 2π) (e.g., equally spaced for M sources) parametrizes
the angular position around the ring.

In this system, these points span two parallel planes, en-
coding depth via differences ∆d in lighting directions be-
tween rings. Rings are circles centered on the z-axis, not
passing through the origin. This mirrors the proof’s con-
struction: points on two z = constant planes with circular
distributions not through the origin.

We validate it satisfies the general position as follows,
drawing on the proof’s construction (points on two planes
with circles not through origin, extended to non-coplanar
sets): Restrict to one plane (z = 0); the forbidden quadric
becomes a conic in xy passing through (0, 0) (no constant
term). With ≥ 5 points on a circle not through (0, 0),
the unique conic through them has a constant term, so
no matching conic without constant exists unless trivial.
Adding points on z = ∆d forces remaining coefficients to
zero (by linear independence of [xk, yk]). The 3D distri-
bution resolves translations (axial separation fixes z-shift;
angular spread fixes xy-shifts). Thus, the general position
holds for generic r1 ̸= r2,∆d ̸= 0, and non-collinear angu-
lar positions.

Case 2: Trefoil curve. This configuration uses a single
ring of lights mounted on a tilted, rotating mechanism to
trace a non-planar, asymmetric 3D trefoil curve. The light
positions are defined by:

p(t) =

(r1 + r2 sin(ωt+ ϕ) cos(α)) cos(t)
(r1 + r2 sin(ωt+ ϕ) cos(α)) sin(t)

−r2 sin(ωt+ ϕ) sin(α)

+

−r2 cos(ωt+ ϕ) sin(t)
r2 cos(ωt+ ϕ) cos(t)

0

 (23)

where r1, r2 are radii, α is the tilt angle, ω is a frequency
ratio, t ∈ [0, 2π) parametrizes the curve, and ϕ is a phase
shift. This structure combines circular motion in the xy-
plane (radius r1) and a secondary oscillation (amplitude
r2, tilt α, frequency ω, phase ϕ) that traces a 3D trefoil
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Figure 9. Effectiveness of the integrability constraint. As the
weight λint decreases from (a) 0.1 to (e) 0, the MAE sharply in-
creases. Without this constraint (λint = 0), the solution is ambigu-
ous, leading to errors in both normal and lighting estimation. Our
chosen value of (b) λint = 0.01 provides the best balance.

curve. The curve is non-planar (z-component varies with
sin(ωt + ϕ)), asymmetric (trefoil pattern breaks rotational
symmetry), and spans R3. Sampled points (≥ 7, equally
spaced in t) are in general position if parameters ensure no
accidental alignment on low-degree surfaces.

We validate it satisfies the general position as fol-
lows: The curve avoids coplanarity (z-variation) and special
quadrics. For generic parameters (e.g., r1 ̸= r2 > 0, α ̸= 0,
ω ̸= 1, ϕ ̸= 0), sampled points do not satisfy any non-
trivial forbidden quadric. This follows from perturbation:
start with the proof’s construction (non-coplanar points not
on such quadrics), and note the trefoil is a continuous de-
formation preserving genericity. The asymmetry and 3D
spread resolve rotations/translations. Numerically, for spe-
cific parameters (e.g., r1 = 1, r2 = 0.5, α = π

4 , ω = 3,
ϕ = 0), sampling 7 points yields a full-rank M (verifiable
via SVD; rank deficiency would require unlikely parameter
tuning). Thus, the general position holds.

Both configurations satisfy the requirements. They are
continuous (parameterized by t ∈ [0, 2π]), but in practice,
≥ 7 discrete points are placed (equally placed). Both con-
figurations are realizable with off-the-shelf components and
are suitable for handheld operation.

7.2. B-Spline Coefficients
For the lighting estimation with continuous representation,
we use temporal coefficients Cj,l(t) defined by the standard
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Figure 10. Ablation on continuous lighting representation. We
compare (a) our cubic B-spline model with (b, c) a simpler linear
interpolation model. Using (b) linear interpolation with the same
number of control points (32) results in an increase in error. Re-
ducing the knots to (c) 15 leads to a degradation in performance,
as the model can no longer capture the smooth lighting variation.

De Boor–Cox recurrence relation for a spline of order l (de-
gree l − 1):

Cj,0(t) =

{
1 if tj ≤ t < tj+1,

0 otherwise,
(24)

and

Cj,l(t) =
t− tj
l∆t

Cj,l−1(t)+
tj+l+1 − t

l∆t
Cj+1,l−1(t). (25)

8. Further Analysis and Ablation Studies
Synthetic data generation. To enable comprehensive
evaluation, we created a synthetic dataset using objects
from the Blobby dataset [15]. For each object, we ren-
dered 500 dense images under rotating lighting conditions
for 6 complete rounds, using the dual ring scanning pattern.
These images were then converted to event streams using
the ESIM simulator [29].

Effectiveness of the integrability constraint. As shown
in Fig. 9, the integrability constraint is crucial for resolving
ambiguity. Removing it (λint = 0) causes the average MAE
to increase by over 18%, demonstrating its effectiveness in
pruning incorrect solutions allowed by the GBR ambiguity.

Effectiveness of the continuous lighting representation.
We ablated our B-spline model to validate its design. Fig. 10
shows that a cubic spline significantly outperforms linear
interpolation, which yields higher MAE with the same num-
ber of control points. This validates our choice of a cubic
spline representation for handling asynchronous data.
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Figure 11. Robustness to ambient illumination. We test our
method on synthetic data with varying ratios of ambient to direct
illumination. Performance remains stable for ratios up to 0.10, and
degrades gracefully thereafter.
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Figure 12. Robustness to specular highlights, a common non-
Lambertian effect. Our EventUPS filters high-frequency events
that often correspond to specularities. The top row shows the re-
sult with filtering, achieving a low MAE. The bottom row shows
the result without filtering, where specular events introduce signif-
icant artifacts and increase the error.

Robustness to ambient illumination. Fig. 11 demon-
strates our method’s strong robustness to ambient light—a
critical feature for real-world deployment. Our augmented
null space formulation explicitly models this effect, allow-
ing EventUPS to maintain high accuracy even when the am-
bient light is 10% as strong as the direct illumination. Per-
formance degrades gracefully, far surpassing methods that
assume dark-room conditions.

Robustness to non-Lambertian effects. Following [45],
we filter high-frequency events (often due to specular high-

Lighting configuration
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Light
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7.32
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Figure 13. Robustness to the lighting system pose. We simu-
lated various transformations relative to the camera: (a) a view-
centered baseline, (b) rotation around the object, (c) rotation about
the light’s axis, (d) translation along the z-axis, and (e) rotation
around the z-axis. The top-left plot shows the projected light path
for each case. EventUPS maintains consistent, high-quality per-
formance across all configurations.

lights or sharp shadow boundaries) using thresholding.
As shown in Fig. 12, this effectively mitigates artifacts
from moderate specular highlights, demonstrating that our
method’s robustness.

Robustness to lighting system pose. Fig. 13 confirms
that our method is resilient to the global pose of the lighting
system. This robustness is critical for practical use cases,
especially handheld operation, where precise alignment is
not feasible.

9. Complete Evaluation Results
Complete visual results of our method, EventPS [45],
PF14 [28] (56 frames), and CW20 [5] (6 frames) for all
objects in the DiLiGenT-Ev dataset are shown in Fig. 14.
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Figure 14. Complete visual results on the DiLiGenT-Ev semi-real dataset, showing the full set of reconstructions for all objects.


