Supplementary Material

A. Detailed Derivation.

Here, we present the detailed derivation of time complex-
ity for the decoder to demonstrate the effectiveness of our
query pruning strategy. GroundingDINO iteratively pro-
cesses a large number of query embeddings, resulting in sig-
nificant computational bottlenecks. As GrounddingDINO
is based on Deformable DETR [48], its decoder’s compu-
tations are mainly occupied by the multi-head self-attention
(MHSA) operations and feed-forward layers. MHSA is de-
fined as follows:
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where X € RV* indicates the query embeddings, H is the
head number, and W{, Wk, WY W¢ € R%*9 are the lin-
ear weights of ¢-th head. The time complexity of each layer
is O(N?2d + Nd?), hence the total time complexity for a L-
layer decoder is O (L(Nd? + N2d)). Then, if we employ
the confidence-aware query pruning strategy to identify and
retain only % queries at each layer, the total time complexity

becomes:
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which is independent of the decoder depth L. Note that in
equation 10, the items 1 — - and 1 — 2~ can be omitted
because k% r and k% are typically much smaller than 1 when

k > 1and L is arelatively large positive integer.

B. Additional Implementation Details.

FPN. We follow the prior FPN structure [3, 23], which
consists of several 2D convolution, GroupNorm and ReLU
Layers. Nearest neighbor interpolation is used for upsam-
pling steps.

Implementation Details. The coefficients for losses are
set as >\cls =4, >\L1 =3, )\giou =2, Adice =9, )\focal = 57
Aproj = 5. We apply image augmentation techniques such
as flipping, rotation, cropping, and scaling during training,

following previous works [25, 40]. The model is pretrained
on Ref-COCO/g/+ for 20 epochs with the batch size of 8
for Swin-T and 10 for Swin-B. Then we individually train
the models on Ref-YouTube-VOS for 2 epochs and A2D-
Sentence for 6 epochs. For MeViS, we train the models for
15 epochs. The number of sampling frames is 6. We use
AdamW as the optimizer with the weight decay of le-4 and
initial learning rate of Se-5, which is linearly rescaled with
the batch size. All experiments are conducted on 8 NVIDIA
A800 GPUs.

C. Comparisons with Vanilla Baselines.

As mentioned in Section 2, some previous works [1, 13]
also attempted to employ GroundingDINO for RVOS task.
Grounded-SAM?2 [1] extracts object regions with Ground-
ingDINO and produces masks with SAM2 [28]. Based on
this, AL-Ref-SAM2 [13] further incorporates GPT4 [2] to
select key frames and boxes. However, such a manner of
model ensemble is not end-to-end differentiable, preventing
further refinement of RVOS-specific capability. As shown
in Table 6, our ReferDINO outperforms these ensemble
methods by large margins on MeViS dataset, the largest
RVOS benchmark. These results demonstrate the advan-
tages of our end-to-end adaptation approach.

Method | J&F J F FPS

Video-Swin-T / Swin-T

Grounded-SAM?2 [1] 374 31.0 43.7 6.1

ReferDINO (ours) 48.0 43.6 52.3 28.0

Video-Swin-B / Swin-B

Grounded-SAM?2 [1] 40.5 34.5 46.4 6.1
AL-Ref-SAM 2 [13] 42.8 39.5 46.2 <6.1

ReferDINO (ours) 49.3 4.7 53.9 26.6

Table 6. Performance comparison on MeViS.

D. Additional Latency Comparisons.

In Table 7, we compare with SOTA dynamic-head methods
and our baseline on Ref-Youtube-VOS. The results show
that our mask decoder reduces memory usage by 11.2G, en-
abling superior performance over SOTAs at comparable or
faster speed.

Model J&F 1 Memory. FPS?T
SgMg [25] 62.0 16.5G 50.3
MUTR [42] 64.0 34.0G 41.4
G-DINO+DH 64.2 25.3G 50.2
ReferDINO (Ours) 67.5 14.1G 51.0

Table 7. Comparison of training memory and inference speed.



E. Additional Ablation Studies.

Momentum Coefficient. The momentum coefficient « in
our tracker controls the amplitude of memory updating. We
visualize a case in Figure 7 to show its impact on temporal
consistency. In this case, a smaller « (i.e., long-term mem-
ory) yields the best performance. This is because the identi-
fication in the initial frames is crucial as it captures the clue
“started at the back”. While we set « = 0.1 by default in
main experiments, it is promising to explore an a-adaptive
strategy in future work. In our main experiments, we set
a = 0.1 by default.

"The little cat that started at th

e back and then moved to the front."
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Figure 7. Qualitative impacts of « in memory-augmented tracker.
We use X to highlight the incorrect results.

F. More Visualizations.

We provide more visualizations of diverse objects in Fig-
ure 8 to demonstrate the robustness of our model.
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“A cat laying near an apple.”
“A red apple being played with by a black cat.”

"An elephant is walking away from the ball and moving forward.”
"A blue and white ball."
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“Ship falling sideways."
“The tugboat in front of the big ship.”
"The boat positioned behind the stern of the big ship.”
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“Darkest and largest cat standing on the left without moving."
“Little cat that started at the back and then moved to the front."
"The little cat, moving a few steps forward from the far right."

"The moving cat on the left front."

Figure 8. Visualization of our ReferDINO for multiple text refer-
ences.



	Introduction
	Related Works
	Background: GroundingDINO
	ReferDINO
	Grounding-guided Deformable Mask Decoder
	Object-consistent Temporal Enhancer
	Confidence-aware Query Pruning
	Training and Inference

	Experiments
	Experimental Setup
	Main Results
	Ablation Studies
	Qualitative Analysis

	Conclusion
	Detailed Derivation.
	Additional Implementation Details.
	Comparisons with Vanilla Baselines.
	Additional Latency Comparisons.
	Additional Ablation Studies.
	More Visualizations.



