
Towards Human-like Virtual Beings: Simulating Human Behavior in 3D Scenes

Supplementary Material

In this document, we provide the following items that
shed deeper insight on our contributions:

• §S1: Details about data generation prompts.
• §S2: Details about environment description heuristics.
• §S3: Details about motion trajectory generation and

human-scene interaction.
• §S4: Details about MCTS process.
• §S5: More dataset statistics.
• §S6: More qualitative visualization and detailed goal-

plan json.
• §S7: Discussion of legal/ethical considerations and limi-

tations.

S1. Prompts for Data Generation

We give full details of the prompts used in generating lin-
guistic goal-plan trees, including in goal-plan trees initial-
ization Table S1, attribution of interchangeable groups in
Table S2, and goal-plan tree refinement in Table S3.

S2. More Details of Environment Description
Generation

In ACTOR, we employ heuristic functions to parse agent
perception. They take scene geometry, which includes ob-
ject segmentation, as well as the agent’s state of position
and action type as input (Fig. 2 Right) and gives a linguistic
description of the entire scene and the agent’s surroundings
as output. To provide a concrete example, a linguistic envi-
ronmental description could be as follows:

ENVIRONMENT: {residential interior}; OBJECTS: {bed,
desk, chair, kitchen counter, sink, television, ..., sofa}; SUR-
ROUNDINGS: {sink: empty, faucet: turned on, toilet: va-
cant}

The "Environment" and "Objects" fields offer the agent a
comprehensive understanding of the human behaviors that
may occur in the current scene. On the other hand, the
"Surroundings" field provides the agent with information
about interactive objects and their respective states in the
surrounding environment.

S3. More Details of Motion Trajectory Gener-
ation and Human-Scene Interaction

In the action module of ACTOR, we generate whole-body
human actions in 3D scenes using off-the-shelf conditional
motion generation models. Here we provide more details on
how we achieve motion trajectory generation and human-
scene interaction.

For motion trajectory generation, once the linguistic
planning step provides us with a parsed <action, object>
pair, we categorize the action into two types: still and mov-
ing. First, for still actions, such as stand up and knock, no
trajectory estimation is necessary as the human remains in a
fixed position. Then, as we mentioned in §4.1, for moving
actions like walking, trajectory paths are pre-estimated [1].
We adapt the trajectory estimation module from [1]. The
end position is sampled based on contact and collision rules,
taking into account the scene and targeted object geome-
try. The goal is to position the human close to the target
while avoiding collisions with walls. The start position is
determined based on the previous step’s end position. Sub-
sequently, this module utilizes an improved A* path search
algorithm, considering the start-end position and the entire
scene geometry, to generate the final trajectory.

Furthermore, for achieving human-scene interaction, we
construct the leaf nodes of these goals as <scene, text,
motion> pairs to finetune the conditional motion genera-
tion model [2], where a scene-conditioned branch is added
and implemented with a pretrained and fixed Point Trans-
former [3] to achieve human-scene interaction. The condi-
tional motion generation model takes pre-estimated trajec-
tory, text description, and scene geometry as input to gen-
erate the whole-body motion. While the grasp estimation
model further refine the hand pose. During finetuning, we
keep the hyperparameters consistent with the official im-
plementation, except for using a learning rate that is half of
the original value. This adjustment already yields moderate
adaptation.

S4. More Details of MCTS Process

In Fig. 2, we illustrate a generalized view of the tree struc-
ture used in different algorithms such as greedy search,
DFS, BFS, A* search, and also MCTS. The value function
assigns values to each node, while node expansion deter-
mines the probability of transitioning from the node state.
In this section, we present a more detailed description of
MCTS process based on the proposed value-driven planning
approach. Specifically, in MCTS, the root node represents
the current state of the system being executed. Each child
node corresponds to a potential action or step that can be
taken from the current state. These nodes have associated
values and states, which include information about the cur-
rent scene and the state of the human involved. First, the
initial value of a node is determined by the value function
(cf . §4.2). This value is then updated during the backprop-
agation phase. Second, during the expansion phase, new

child nodes are created by sampling from LLM within the
Node Expansion process. Third, in the backpropagation
phase, the results of a two-step rollout are summarized. This
involves considering the values of the two-step children and
updating the value of the parent node accordingly. Finally,
the MCTS process continues to iterate until a termination
condition or goal is reached, signifying that the search is
finished.

S5. More Dataset Statistics
We provide lists of most frequently used motion and ob-
jects in Fig. S3-S4 and Table S4-S5. Example scene is il-
lustrated in Fig. S1. We next give brief description of the
scene dataset we incorporate for data generation: (i) Scan-
Net [4] is a widely known dataset in computer vision and
3D scene understanding. ScanNet is a large-scale RGB-D
dataset containing 3D scans of indoor spaces, along with
detailed semantic and instance-level annotations. It is com-
monly used for tasks such as 3D scene understanding, ob-
ject recognition, and semantic segmentation. Researchers
and developers use ScanNet to train and evaluate algorithms
for various applications related to understanding the 3D
structure of indoor environments. (ii) Habitat-Matterport
3D Research Dataset (HM3D) [5] is the largest-ever dataset
of 3D indoor spaces. It consists of 1,000 high-resolution 3D
scans (or digital twins) of building-scale residential, com-
mercial, and civic spaces generated from real-world envi-
ronments. Researchers can use it with FAIR’s Habitat sim-
ulator to train embodied agents, such as home robots and AI
assistants, at scale.

S6. More Visualization and goal-plan JSON
More illustrations of qualitative visualization and detailed
goal-plan tree JSONs are given in Fig. S2.

S7. Discussion
Asset License and Consent. We build BEHAVIORHUB
on top of three human motion datasets (i.e., AMASS [6],
BABEL [7], GRAB [8]), and two indoor scene datasets
(i.e., ScanNet [4], HM3D [5]), that are all publicly and
freely available for academic purposes. We implement our
agent with LangChain codebase using GPT-3.5 and GPT-
4 models. AMASS (https://amass.is.tue.mpg.
de/) is released under this License; BABEL (https:
//babel.is.tue.mpg.de/) is released under this
License; GRAB (https://grab.is.tue.mpg.
de/) is released under this License; ScanNet (http://
www.scan-net.org/) is released under this License,
and the code is released under the MIT license; HM3D
(https://aihabitat.org/datasets/hm3d-
semantics/) is released under this License; LangChain
codebase (https://github.com/langchain-ai/

langchain) is released under the MIT license. GPT mod-
els from OpenAI are available for academic research under
this License.
Crowdsourcing Data Collection. BEHAVIORHUB is pri-
marily collected through an automated data collection
pipeline, with minimal human intervention required for ver-
ification. In addition, we conduct user studies to evaluate
the quality of the human-subjective generation. All human
experts involved in the annotation and evaluation process
are well-informed that their contributions will be utilized
for academic research, and their consent is obtained through
signed agreements. To ensure privacy and equality, the an-
notation process strictly adheres to guidelines that prevent
the disclosure of personal information about the experts and
minimize data bias.
Limitation Analysis. One limitation of this work is that al-
though the generated human motions are scene-aware, the
interaction with objects is currently assumed to be static.
In our future work, we aim to enhance the capabilities of
BEHAVIORHUB and the ACTOR agent by incorporating in-
teractions with interactive objects. To achieve this goal,
we have developed our environment using the Habitat-Sim
simulator, which offers the necessary flexibility to realis-
tically simulate these interactions in future developments.
Furthermore, we are committed to designing a more real-
istic benchmark and algorithm for simulating interactions,
ensuring that our work aligns with future advancements in
this area. To encourage broader exploration and engage-
ment from the research community, we will also release
our complete code implementation, comprising the environ-
ment simulator, dataset construction, and agent implemen-
tation.
Broader Impact. This study focuses on simulating high-
level, long-horizon, abstract goal-driven human behaviors
in 3D scenes. The approach has several positive implica-
tions, including advancements in Embodied AI, potential to
populate virtual reality communities, and enhancement of
non-player game character development. However, there
are potential negative consequences to consider. The gener-
ated results could be exploited for malicious purposes, such
as the creation of highly realistic and deceptive virtual char-
acters for social engineering or online scams. While this
issue falls outside the scope of this paper, we intend to re-
lease our models in a gated manner to ensure that they are
solely used for academic research purposes and prevent any
misuse.

Figure S1. Example Scene. (a) Global view from a slanted perspective; (b) Global top-down view; (c) Local view of a living room.

<open>, <wardrobe><open>, <wardrobe> <take>, <clothes><take>, <clothes> <put on>, <clothes><put on>, <clothes> <walk>,
<refrigerator>

<walk>,
<refrigerator>

<open>,
<refrigerator>

<open>,
<refrigerator>

<walk>,
<dining chair>

<walk>,
<dining chair>

<sit>,
<dining chair>

<sit>,
<dining chair> <eat>, <food in refrigerator><eat>, <food in refrigerator>

<take>, <broom><take>, <broom><walk>,
<broom>
<walk>,
<broom> <clean>, <floor><clean>, <floor> <walk>, <computer desk><walk>, <computer desk> <sit>, <computer desk><sit>, <computer desk> <typing>, <keyboard><typing>, <keyboard>

<walk>,
<refrigerator>

<walk>,
<refrigerator>

<open>,
<refrigerator>

<open>,
<refrigerator>

<walk>,
<stove>
<walk>,
<stove>

<place>, <food in
refrigerator>, <stove>

<place>, <food in
refrigerator>, <stove> <cut>, <food in refrigerator><cut>, <food in refrigerator> <cook>, <food in refrigerator><cook>, <food in refrigerator> <walk>,

<dining chair>
<walk>,

<dining chair>
<sit>,

<dining chair>
<sit>,

<dining chair> <eat>, <food in refrigerator><eat>, <food in refrigerator>

<take>, <broom><take>, <broom><walk>,
<broom>
<walk>,
<broom> <clean>, <floor><clean>, <floor> <clean>, <window><clean>, <window> <walk>, <washing

machine>
<walk>, <washing

machine>
<place>, <clothes>,
<washing machine>
<place>, <clothes>,
<washing machine>

<walk>,
<dining table>

<walk>,
<dining table>

<clean>,
<dining table>

<clean>,
<dining table>

<walk>,
<sink>

<walk>,
<sink>

<wash>,
<kitchen appliance>

<wash>,
<kitchen appliance>

Getting dressed
Goal: prepare for the day

Home cleaning Work from homeWork from home

Goal: prepare dinner

Gather ingredients Cook ingredients Serve dinner

Goal: sunday cleaning
Clean bedroom

Breakfast preparation

Wash clothes Clean kitchen

Figure S2. More qualitative visualization on our BEHAVIORHUB dataset.

Figure S3. (a) Counts of actions in our BEHAVIORHUB dataset; (b) Object counts.

Figure S4. (a) Most frequently used objects; and (b) Most frequently used actions.

Table S1. Detailed prompt design for goal-plan trees initialization.

G
oa

l-
Pl

an
Tr

ee
s

In
iti

al
iz

at
io

n

Prompt

#1 goal-plan trees Initialization Stage - The following is a friendly conversation between a human and an AI. The AI is professional and
can generate multiple goal-plan trees with lots of specific details from its context. The AI assistant is required to using the provided
“object list” and "action list" to come up with several tree-structure tasks with the following format: [{“Root”: task, “children”: [{
“node1”: subtask, “children”: [{“node1-1”: ACTION, “children”: []}, {“node1-2”: ACTION, “children”: []}]}, {“node2”: subtask,
“children”: [{“node2-1”: ACTION, “children”: []}]}]}]. Note: “ACTION” must be “<action>”, “<action>, <object>” or “<action>,
<object>, <object>”, non-leaf nodes must be “task” or “subtask”. Intermediate nodes must be grouped, and the order of nodes in the
same group is interchangeable. The AI assistant must reply in JSON format. The “task” or “subtask” field represents high-level task such as
“Read a book”, “Take a shower” or “Watch TV”. The “task” or “subtask” must be complex activities or objectives in household. The “<action
>” must be selected from the “action list”, “<object>” must be selected from the “object list”, and together they achieve the corresponding
“task”. Here are the “object list” and “action list” provided: {{Object List}}, {{Action List}}. To assist with goal-plan tree generation, here
are several cases for your reference: {{Demonstrations}}.

Demonstrations
Now, please generate a tree-structure tasks:
{“Root”: “play the toy”, “children”: [“node1”, “node2”], “interchangeable groups”: [“node”]}

{“node1”: “walk toy”, “children”: [] }
{“node2”: “play toy”, “children”: [] }

Now, please generate a tree-structure tasks with more branches and more depths. Remember you should reply in JSON format
and the “<action>” must be selected from the “action list”, “<object>” must be selected from the “object list”:
{“Root”: “morning routine”, “children”: [“node1”, “node2”, “node3”]}

{“node1”: “have breakfast”, “children”: [“node1-1”, “node1-2”, “node1-3”] }
{“node1-1”: “<walk>”, <refrigerator>”, “children”: []}
{“node1-2: “<open>, <refrigerator>”, “children”: []}
{“node1-3”: “<garb>”, <food in refrigerator>”, “children”: []}

{“node2”: “eating”, “children”: [“node2-1”, “node2-2”, “node2-3”] }
{“node2-1”: “<walk>, <dining table>”, “children”: [] }
{“node2-2”: “<sit>, <dining table>”, “children”: [] }
{“node2-3”: “<eat>“, “children“: [] }

{“node3”: “work”, “children”: [“node3-1”, “node3-2”, “node3-3”] }
{“node3-1“: “<walk>, <computer chair>“, “children“: [] }
{“node3-2“: “<sit>, <computer chair>“, “children“: [] }
{“node3-3“: “<typing>, <keyboard>“, “children“: [] }

Table S2. Detailed prompt design for intermediate nodes labeling.

In
te

rm
ed

ia
te

N
od

es
L

ab
el

in
g

Prompt

#2 Intermediate Nodes Labeling Stage – With the input goal-plan tree in JSON, the AI should assist in labeling the intermediate nodes
in the trees using the attribute "interchangeable groups". Note: Intermediate nodes must be grouped, and the order of nodes in the
same group is interchangeable. For a more comprehensive understanding of this procedural step, please refer to the corresponding
demonstration {{Demonstrations}}. Remember you should reply in JSON format.

Demonstrations
Please label the intermediate nodes in the following goal-plan tree:
Query:
{“Root”: “evening routine”, “children”: [“node1”, “node2”, “node3”]}

{“node1”: “watch TV”, “children”: [“node1-1”, “node1-2”, “node1-3”] }
{“node1-1”: “<walk>”, <couch>”, “children”: []}
{“node1-2: “<sit>, <couch>”, “children”: []}
{“node1-3”: “<press>”, <remote>”, “children”: []}

{“node2”: “have dinner”, “children”: [“node2-1”, “node2-2”, “node2-3”, “node2-4”, “node2-5”, “node2-6”] }
{“node2-1”: “<walk>, <refrigerator>”, “children”: [] }
{“node2-2”: “<open>, <refrigerator>”, “children”: [] }
{“node2-3”: “<take>, <food in refrigerator>“, “children“: [] }
{“node2-4“: “<walk>, <dining chair>“, “children“: [] }
{“node2-5“: “<sit>, <dining chair>“, “children“: [] }
{“node2-6“: “<eat>, <food in refrigerator>“, “children“: [] }

{“node3”: “edtime routine”, “children”: [“node3-1”, “node3-2”] }
{“node3-1“: “<walk>, <bed>“, “children“: [] }
{“node3-2“: “<lie>, <bed>“, “children“: [] }

Response:
{“Root”: “evening routine”, “children”: [“node1”, “node2”, “node3”], “interchangeable groups”: [“group1”, “group2”]}

{“node1”: “watch TV”, “children”: [“node1-1”, “node1-2”, “node1-3”] }
{“node1-1”: “<walk>”, <couch>”, “children”: []}
{“node1-2: “<sit>, <couch>”, “children”: []}
{“node1-3”: “<press>”, <remote>”, “children”: []}

{“node2”: “have dinner”, “children”: [“node2-1”, “node2-2”, “node2-3”, “node2-4”, “node2-5”, “node2-6”] }
{“node2-1”: “<walk>, <refrigerator>”, “children”: [] }
{“node2-2”: “<open>, <refrigerator>”, “children”: [] }
{“node2-3”: “<take>, <food in refrigerator>“, “children“: [] }
{“node2-4“: “<walk>, <dining chair>“, “children“: [] }
{“node2-5“: “<sit>, <dining chair>“, “children“: [] }
{“node2-6“: “<eat>, <food in refrigerator>“, “children“: [] }

{“node3”: “watch TV”, “children”: [“node3-1”, “node3-2”] }
{“node3-1“: “<walk>, <bed>“, “children“: [] }
{“node3-2“: “<lie>, <bed>“, “children“: [] }

{“group1“: [{“node1“}, {“node2“}]}
{“group2“:[{“node3“}]}

Table S3. Detailed prompt design for goal-plan trees refinement.

go
al

-p
la

n
Tr

es
s

R
efi

ne
m

en
t

Prompt

#3 goal-plan Tress Refinement Stage – Given the goal-plan tree in JSON format, the AI assistant helps improve its rationality from
two aspects: 1. Completing the missing internal steps, which can often be revised on commonsense (e.g., opening the refrigerator
without closing it). 2. Enhancing the non-leaf node descriptions to be more abstract (e.g., from ‘use toilet’ to ‘feel the call of nature’).
Note that: You should only output the revised goal-plan tree in JSON. To facilitate goal-plan tree refinement, a set of illustrative cases
is provided for reference: {{Demonstrations}}.

Demonstrations
Please refine the goal-plan tree:
Query:
{“Root”: “use toilet”, “children”: [“node1”, “node2”], “interchangeable groups”: []}

{“node1”: “<walk>, <toilet>”, “children”: [] }
{“node2”: “<sit>, <toilet>”, “children”: []}

Response:
{“Root”: “feel the call of nature”, “children”: [“node1”, “node2”], “interchangeable groups”: []}

{“node1”: “<walk>, <toilet>”, “children”: [] }
{“node2”: “<sit>, <toilet>”, “children”: []}

Please refine2the goal-plan tree:
Query:
{“Root”: “evening routine”, “children”: [“node1”, “node2”, “node3”], “interchangeable groups”: [“group1”, “group2”]}

{“node1”: “watch TV”, “children”: [“node1-1”, “node1-2”, “node1-3”] }
{“node1-1”: “<walk>”, <couch>”, “children”: []}
{“node1-2: “<sit>, <couch>”, “children”: []}
{“node1-3”: “<press>”, <remote>”, “children”: []}

{“node2”: “have dinner”, “children”: [“node2-1”, “node2-2”, “node2-3”, “node2-4”, “node2-5”, “node2-6”] }
{“node2-1”: “<walk>, <refrigerator>”, “children”: [] }
{“node2-2”: “<open>, <refrigerator>”, “children”: [] }
{“node2-3”: “<take>, <food in refrigerator>“, “children“: [] }
{“node2-4“: “<walk>, <dining chair>“, “children“: [] }
{“node2-5“: “<sit>, <dining chair>“, “children“: [] }
{“node2-6“: “<eat>, <food in refrigerator>“, “children“: [] }

{“node3”: “watch TV”, “children”: [“node3-1”, “node3-2”] }
{“node3-1“: “<walk>, <bed>“, “children“: [] }
{“node3-2“: “<lie>, <bed>“, “children“: [] }

{“group1“: [{“node1“}, {“node2“}]}
{“group2“:[{“node3“}]}

Response:
{“Root”: “engage in the rituals of dusk”, “children”: [“node1”, “node2”, “node3”], “interchangeable groups”: [“group1”, “group2”]}

{“node1”: “indulge in the visual leisure”, “children”: [“node1-1”, “node1-2”, “node1-3”] }
{“node1-1“: “<walk>, <couch>“, “children“: []}
{“node1-2“: “<sit>, <couch>“, “children“: []}
{“node1-3“: “<press>, <remote>“, “children“: []}

{“node2”: “partake in the evening nourishment”, “children”: [“node2-1”, “node2-2”, “node2-3”, “node2-4”, “node2-5”, “node2-6”] }
{“node2-1“: “<walk>, <refrigerator>“, “children“: []}
{“node2-2“: “<open>, <refrigerator>“, “children“: []}
{“node2-3“: “<take>, <food in refrigerator>“, “children“: []}
{“node2-4“: “<walk>, <dining chair>“, “children“: []}
{“node2-5“: “<sit>, <dining chair>“, “children“: []}
{“node2-6“: “<eat>, <food in refrigerator>“, “children“: []}

{“node3”: “embrace the rituals preceding slumber”, “children”: [“node3-1”, “node3-2”] }
{“node3-1“: “<walk>, <bed>“, “children“: []}
{“node3-2“: “<lie>, <bed>“, “children“: []}

{“group1“: [{“node1“}, {“node2“}]}
{“group2“:[{“node3“}]}

Table S4. Top 100 objects by frequency in BEHAVIORHUB dataset.

Object List

Pillow, Door, Lamp, Floor, Window, Cabinet, Box, Book, Chair,
Shelf, Table, Mirror, Curtain, Towel, Paint, Bag, Shoe, Clothes,
Sink, Bed, Stairs, Toy, Tap, Cardboard Box,Rug, Toilet, Beam,
Basket, Armchair, Wall Lamp, Drawer, Decoration, Shower Wall,
Pipe, Wardrobe, Vase, Toilet Paper, Picture, Cushion, Bottle, TV,
Carpet, Desk, Decorative Plant, Radiator, Door Knob, Ventilation,
Blanket, Hanger, Blinds, Couch, Photo, Clutter, Stool, Trashcan,
Container, Window Curtain, Appliance, Ornament, Flowerpot,
Product, Candle, Device, Storage Box, Rack, Refrigerator,
Nightstand, Dining Chair, Light Fixture, Support Beam, Basket of
Something, Curtain Rod, Towel Bar, Vent, Bathroom Cabinet, Plate,
Speaker, Heater, Window Glass, Kitchen Appliance, Bathroom
Accessory, Faucet, Kitchen Lower Cabinet, Clock, Flower Vase,
Board, Hanging Clothes, Cabinet Door, Cup, Table Lamp, Dresser,
Air Vent, Case, Cloth, Bathtub, Bin, Flower, Can, Bowl, Cosmetics

Table S5. Top 50 actions by frequency in
BEHAVIORHUB.

Action List

Walk, Sit, Stand Up,
Move, Place, Open,
Take, Clean, Jump, Run,
Throw, Eat, Turn, Pick
Up, Put On, Touch, Lift,
Grasp, Dance, Knock,
Yoga, Catch, Grab, Lie,
Play, Shake, Hit, Drink,
Stop, Give, Wash, Close,
Relax, Remove, Rub,
Check, Wait, Cut, Cook,
Write, Tap, Press, Hang,
Tie, Draw, Chop, Fill,
Brush, Sleep, Flip

Example JSON - Prepare for the day.

[
{
Root: prepare for the

day
children: [
{
node1: getting

dressed
children: [
{
node1-1: <open>,

<wardrobe>
children: []

},
{
node1-2: <take>,

<clothes>
children: []

},
{
node1-3: <put on

>, <clothes
>

children: []
}

]
},
{
node2: breakfast

preparation
children: [
{
node2-1: <walk>,

<kitchen>
children: []

},
{
node2-2: <open>,

<
refrigerator
>

children: []
},
{
node2-3: <take>,

<food in
refrigerator
>

children: []
},
{
node2-4: <walk>,

<dining
chair>

children: []
},
{
node2-5: <sit>,

<dining
chair>

children: []
},
{
node2-6: <eat>,

<food in

refrigerator
>

children: []
}

]
},
{
node3: home

cleaning
children: [
{
node3-1: <walk>,

<bedroom>
children: []

},
{
node3-2: <take>,

<broom>
children: []

},
{
node3-3: <clean

>, <floor>
children: []

}
]

},
{
node4: work from

home
children: [
{
node4-1: <walk>,

<computer
desk>

children: []
},
{
node4-2: <sit>,

<computer
chair>

children: []
},
{
node4-3: <typing

>, <
keyboard>

children: []
}

]
}

],
interchangeable

groups: [
{
group1: [node1]

},
{
group2: [node2,

node3, node4]
}

]
}

]

Example JSON - Prepare dinner.

[
{
Root: prepare dinner
children: [
{
node1: gather

ingredients
children: [
{
node1-1: <walk>,

<
refrigerator
>

children: []
},
{
node1-2: <open>,

<
refrigerator
>

children: []
},
{
node1-3: <take>,

<food in
refrigerator
>

children: []
}

]
},
{
node2: cook

ingredients
children: [
{
node2-1: <walk>,

<stove>
children: []

},
{
node2-2: <place

>, <food in

refrigerator
>, <stove>

children: []
},
{
node2-3: <wait>
children: []

},
{
node2-4: <check

>, <food in

refrigerator
>

children: []
},
{
node2-5: <cut>,

<food in
refrigerator
>

children: []
},
{
node2-6: <cook>,

<food in
refrigerator
>

children: []
}

]
},
{
node3: serve dinner
children: [
{
node3-1: <walk>,

<dining
table>

children: []
},
{
node3-2: <sit>,

<dining
chair>

children: []
},
{
node3-3: <eat>,

<food in
refrigerator
>

children: []
}

]
}

],
interchangeable

groups: [
{
group1: [node1]

},
{
group2: [node2]

},
{
group3: [node3]

}
]

}
]

Example JSON - Weekend cleaning.

[
{
Root: Weekend cleaning
children: [
{
node1: clean

bedroom
children: [
{
node1-1: <walk>,

<bedroom>
children: []

},
{
node1-2: <take>,

<broom>
children: []

},
{
node1-3: <clean

>, <floor>
children: []

},
{
node1-4: <clean

>, <window>
children: []

},
{
node1-5: wash

clothes
children: [
{
node1-5-1: <

walk>, <
washing
machine>

children: []
},
{
node1-5-2: <

place>,
<clothes
>, <
washing
machine>

children: []
}

]
}

]
},
{

node2: clean
kitchen

children: [
{
node2-1: <walk>,

<kitchen>
children: []

},
{
node2-2: <walk>,

<dining
table>

children: []
},
{
node2-3: <clean

>, <dining
table>

children: []
},
{
node2-4: wash

dishes
children: [
{
node2-4-1: <

walk>, <
sink>

children: []
},
{
node2-4-2: <

wash>, <
kitchen
appliance
>

children: []
}

]
}

]
}

],
interchangeable

groups: [
{
group1: [node1,

node2]
}

]
}

]

References
[1] Jingbo Wang, Yu Rong, Jingyuan Liu, Sijie Yan, Dahua Lin,

and Bo Dai. Towards diverse and natural scene-aware 3d hu-
man motion synthesis. In CVPR, 2022. S1

[2] Korrawe Karunratanakul, Konpat Preechakul, Supasorn
Suwajanakorn, and Siyu Tang. Guided motion diffusion for
controllable human motion synthesis. In ICCV, 2023. S1

[3] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and
Vladlen Koltun. Point transformer. In ICCV, 2021. S1

[4] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber,
Thomas Funkhouser, and Matthias Nießner. Scannet: Richly-
annotated 3d reconstructions of indoor scenes. In CVPR,
2017. S2

[5] Santhosh K. Ramakrishnan, Aaron Gokaslan, Erik Wijmans,
Oleksandr Maksymets, Alexander Clegg, John Turner, Eric
Undersander, Wojciech Galuba, Andrew Westry, Angel Xuan
Chang, Manolis Savva, Yili Zhao, and Dhruv Batra. Habitat-
matterport 3d dataset (hm3d): 1000 large-scale 3d environ-
ments for embodied ai. In NeurIPS Datasets and Benchmarks
Track, 2021. S2

[6] Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Ger-
ard Pons-Moll, and Michael J. Black. Amass: Archive of mo-
tion capture as surface shapes. In ICCV, 2019. S2

[7] Abhinanda R Punnakkal, Arjun Chandrasekaran, Nikos
Athanasiou, Alejandra Quiros-Ramirez, and Michael J Black.
Babel: Bodies, action and behavior with english labels. In
CVPR, 2021. S2

[8] Omid Taheri, Nima Ghorbani, Michael J Black, and Dimitrios
Tzionas. Grab: A dataset of whole-body human grasping of
objects. In ECCV, 2020. S2

