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Supplementary Material

In this document, we provide additional content to sup-
plement the main manuscript. Section 1 offers a detailed
introduction and division of the datasets. Section 2 pro-
vides additional quantitative and qualitative results. Section
3 discusses the potential failure cases.

1. Datasets
We evaluate our method on four typical cross-modal UDA
scenarios: scene layout variations (nuScenes: USA/Sing.),
lighting changes (nuScenes: Day/Night), synthetic-to-
real (v.KITTI/Sem.KITTI), and sensor setup variations
(A2D2/Sem.KITTI). These scenarios utilize data from
nuScenes-Lidarseg [2], VirtualKITTI [3], SemanticKITTI
[1], and A2D2 [4]. The nuScenes-Lidarseg dataset sup-
ports both nuScenes: USA/Sing. and nuScenes: Day/Night
adaptation tasks, each defined over six adaptation classes:
vehicle, drivable surface, sidewalk, terrain, manmade, and
vegetation. v.KITTI/Sem.KITTI leverages VirtualKITTI for
simulated data and SemanticKITTI for real-world samples.
To reconcile differences in class definitions, a mapping
from xMUDA [5] is applied, standardizing the adaptation
to six classes: car, trunk, road, vegetation, building, and ob-
ject. A2D2/Sem.KITTI is constructed from A2D2 and Se-
manticKITTI and is intended to evaluate robustness to vari-
ations in sensor configuration and data characteristics, such
as resolution and field of view. More information about the
data splits and class mappings is available in Table S1. All
datasets are synchronized and calibrated for both LiDAR
and camera data, and only the front camera and its corre-
sponding LiDAR points are considered for consistency.

2. Quantitative and Qualitative Results
In this section, we offer additional quantitative and qualita-
tive results. Section 2.1 shows the performance of different
VQ-based approaches in cross-modal UDA for 3D seman-
tic segmentation. Section 2.2 presents the more qualitative
results discussed in the main manuscript.

2.1. Comparison with VQ-based approaches
Here, we extend the latest VQ-based methods [6, 7] to our
task by replacing our CSQM (Cluster-Based Soft Quanti-
zation Mechanism) and LSR (Latent Space Regularization)
with their proposed quantizers. The results are shown in
Table S2. CVQ-VAE [7] attempts to improve codebook
utilization by replacing inactive code vectors with encoded
features and applying a decay factor for smoothing. How-

ever, this inevitably restricts the codebook’s learning capac-
ity, resulting in only a marginal 0.8% improvement in the
xM score on the nuScenes: USA/Sing. scenario. Yang
et al. [6] enhances the correlation between pre- and post-
quantization features by incorporating self-attention mech-
anisms. While effective, it does not explicitly address code-
book collapse and lacks structured learning of the latent
space, making it unsuitable for our task. In contrast, we pro-
pose UniDxMD, introducing CSQM to solve the problems
of insufficient representation and codebook collapse caused
by single-code assignment strategies, and implementing
structured learning of the latent space through LSR. Our
method learns equivalent semantics from different modal-
ities and domains, and derives a unified discrete represen-
tation that addresses both modality bias and domain shift.
This significantly advances the current research benchmark,
providing a novel solution for cross-modal UDA.

2.2. Qualitative Results
We provide more qualitative results to illustrate the effec-
tiveness of our UniDxMD, as shown in Fig. S1, S2, S3 and
S4.

3. Potential Failure Cases
Although our method quantizes heterogeneous data into a
unified latent code to extract semantically equivalent fea-
tures, the features of large objects may dominate during
the quantization process due to their greater number of in-
stances available for codebook updates. As a result, the fea-
tures of small objects can be suppressed, which may limit
the adaptation and segmentation performance of our method
for them. In future work, we plan to explore leveraging the
priors of VFMs to guide the learning of the entire latent
space and to further enhance the discriminative capability
for small objects.
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UDA Scenarios
Source Target

Classes
Train Train Val/Test

nuScenes:USA/Sing. 15,695 9,665 2,770/2,929
Vehicle [bicycle, bus, car, construction vehicle, motorcycle, trailer,

truck]; Driveable Surface; Sidewalk; Terrain; Manmade;
Vegetation

nuScenes:Day/Night 24,745 2,779 606/602
Vehicle [bicycle, bus, car, construction vehicle, motorcycle, trailer,

truck]; Driveable Surface; Sidewalk; Terrain; Manmade;
Vegetation

v.KITTI/Sem.KITTI 2,126 18,029 1,101/4,071

v.KITTI: Car; Truck; Road; Object [traffic sign, traffic light,
pole, misc]; Building; Vegetation [terrain, tree, vegetation]

Sem.KITTI: Car; Truck; Road; Object [fence, pole, traffic-sign,
other-object]; Building; Vegetation [vegetation, trunk, terrain]

A2D2/Sem.KITTI 27,695 18,029 1,101/4,071

A2D2: Car; Truck; Bike [bicycle, small vehicle]; Person; Road;
Parking; Sidewalk [sidewalk, curbstone]; Object; Building;

Vegetation

Sem.KITTI: Car; Truck; Bike [bicycle, motorcycle, bicyclist,
motorcyclist]; Person; Road; Parking; Sidewalk; Object;

Building; Vegetation [terrain, trunk, vegetation]

Table S1. Data splits for different UDA scenarios. The nuScenes:USA/Sing., nuScenes:Day/Night, and v.KITTI/Sem.KITTI scenarios
each contain six adaptation classes (in bold). The A2D2/Sem.KITTI scenario contains ten adaptation classes (in bold).

Exp
nuScenes: USA/Sing. nuScenes: Day/Night

2D 3D xM 2D 3D xM

xMUDA [5] 64.4 63.2 69.4 55.5 69.2 67.4
CVQ-VAE[7] 65.0 64.7 70.2 59.6 69.3 68.5
Yang et al. [6] 65.6 64.5 70.6 58.7 69.1 68.3

CSQM 70.2 67.5 72.3 72.2 70.2 73.1
CSQM + LSR 73.2 68.5 74.3 73.5 71.8 74.6

Table S2. Comparison with VQ-based methods. xMUDA serves
as the baseline. (mIoU↑, %).
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Figure S1. Additional qualitative results on nuScenes: USA/Sing. scenario.



Figure S2. Additional qualitative results on nuScenes: Day/Night scenario.



Figure S3. Additional qualitative results on v.KITTI/Sem.KITTI scenario.



Figure S4. Additional qualitative results on A2D2/Sem.KITTI scenario.
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