Appendix

Roadmap.

 Section A discusses the limitations of the paper.

» Section B discusses the societal impacts of the paper.

 Section C provides the preliminary for the paper.

 Section D provides the case when we consider a continuous time score function, specifically a single Gaussian.
* Section E provides the case when we consider the score function to be 2 mixtures of Gaussians.

* Section F provides the case when we consider the score function to be k& mixture of Gaussians.

 Section G provides the tools that we use from previous papers.

» Section H provides lemmas that we use for a more concrete calculation for theorems in Section G.

* Section | provides our main results when we consider the data distribution is k£ mixture of Gaussians.

A. Limitations

This work has not directly addressed the practical applications of our results. Additionally, we did not provide a sample
complexity bound for our settings. Future research could explore how these findings might be implemented in real-world
scenarios and work on improving these limitations.

B. Societal Impacts

We explore and provide a deeper understanding of the diffusion models and also explicitly give the Lipschitz constant for
k-mixture of Gaussians, which may inspire a better algorithm design.

Our theoretical results have several important implications: (1) Architecture Design: Our finding that the Lipschitz con-
stant is independent of the number of mixture components, but inversely proportional to o ,i,, suggests model architectures
with implicit regularization on the minimum singular values could be more stable. (2) Training Guidance: As demonstrated
in our experiments, understanding the relationship between covariance structures and Lipschitz constants can guide hyperpa-
rameter selection.

On the other hand, our paper is purely theoretical in nature, so we foresee no immediate negative ethical impact.

C. Preliminary

This section provides some preliminary knowledge and is organized as below:
» Section C.1 provides the facts we use.

 Section C.2 provides the property of exp function we use.

 Section C.3 provides the Lipschitz multiplication property we use.

C.1. Facts

We provide several basic facts from calculus and linear algebra that are used in the proofs.

Fact C.1 (Calculus). Forz c R,y e R, t € R, u € R", v € R", it is well-known that

dz _ dody i
* 3 T dydr (chain rule)

. jditz = i—fgij—l %m (product rule)

. ddé’v): nx (;.mw.er rule) .

: @x)—_v (derlvatt;e (?fth.e inner producz.‘)l '

. @_—1 e;;lp(s.c) ( : erivative of exponent.la function)
g = 7 (derivative of logarithm function)

o L|u||3 = 2u (derivative of (> norm)
d
v
Fact C.2 (Norm Bounds). Fora € R, b € R, u € R", v € R?, A € R*¥*" W € R" " is symmetric and p.s.d., we have
¢ |lau|lz = |a] - |u||2 (absolute homogeneity)

o |lu+ vl < |ullz + ||v]|2 (triangle inequality)

o |uTv| < |jullz - ||v||l2 (Cauchy-Schwarz inequality)

L]

= 0 if y is independent from x. (derivative of independent variables)



a2 = llull2

[[Aullz < [|A]l - [|ull2
aAll = |a| - [|A]l

[All = omax(A)

s A7 = #(Ag

uT Wu > ||ul|2 - omin(W).
M Umin(W_l) = L

L]

Omax(W)"*

Fact C.3 (Matrix Calculus). Let W € R"™*™ denote a symmetric matrix. Let v € R™ and s € R"™. Suppose that s is
independent of x. Then, we know

e Lz—s)TW(x—s)=2W(z—s)

C.2. Properties of exp functions

During the course of proving the Lipschitz continuity for mixtures of Gaussians, we found that we need to use the following
bound for the exp function.

Fact C4. For|a —b| < 0.1, where a € R, b € R, we have
|exp(a) — exp(b)| < |exp(a)| - 2|a — b
Proof. We have
| exp(a) — exp(b)| = [ exp(a) - (1 — exp(b — a))|

— Jexp(a)| - (1 — exp(b— a))|
< exp(a)| -2Ja —

where the first step follows from simple algebra, the second step follows from |a - b] = |a| - |b|, and the last step follows from
|exp(xz) — 1] < 2z forall x € (0,0.1). O

Fact C.5. For ||u — v|eo < 0.1, where u,v € R"™, we have
[lexp(u) — exp(v)j2 < [[exp(u)]lz - 2[lu = vl

Proof. We have

[l exp(u) — exp(v)[l2 = || exp(u) o (1, — exp(v — u))]|2
< llexp(u)llz - [[1n — exp(v — u)l
< [lexp(u)llz - 2[|u = v[|oo

where the first step follows from notation of Hardamard product, the second step follows from v o vz < ||ul|e - ||v]|2, and
the last step follows from |exp(x) — 1| < 2z forall x € (0,0.1).

Fact C.6 (Mean value theorem for vector function). For vector x,y € C' C R™, vector function f(z): C = R, g(z) : C —
R™, let f, g be differentiable on open convex domain C, we have

* Part I: f(y) = f(2) = Vf(z +t(y —2))(y — 2)
e Part 2: |lg(y) — g(@)||2 < |l¢'(x + t(y — x))|| - ||y — x||2 for some t € (0,1), where ¢g'(a) denotes a matrix which its

(1,7)-th term is %‘Z)J’.
* Part 3: If ||¢/(a)|| < M forall a € C, then ||g(y) — g(z)|l2 < M|y — z||2 for all z,y € C.

Proof. Proof of Part 1
Part 1 can be verified by applying Mean Value Theorem of 1-variable function on y(c) = f(x + c(y — z)).

fly) = f@) =7(1) =1(0) =7/ (t)(1 = 0) = Vf(z + t(y — 2)) " (y — @)

where ¢ € (0,1).
Proof of Part 2



Let G(c) := (9(y) — g(x)) " g(c), we have
l9(y) — 9(2)[3 = G(y) — G(2)
=VG(z+ty—=) (y - =)
= (g (x+tly—2))-(9(y) —g9(2)" - (y — )
o e hnend
<|lg'(x+tly =) llg(y) — g(@)ll2 - [ly — |2

the initial step is by basic calculation, the second step is from Part 1, the third step uses chain rule, the 4th step is due to
Cauchy-Schwartz inequality. Removing ||g(y) — g(«)||2 on both sides gives the result.

Proof of Part 3

Part 3 directly follows from Part 2. O

We show the upper bound of exp’ below, assuming input is bounded.
Fact C.7. Let ¢'(a) denotes a matrix whose (i, j)-th term is %. Foru € R™, v € R",
t € (0,1), we have '

ull2, |v|l2 < R, where R > 0,

[l exp’(u +t(v — w))|| < exp(R)

Proof. We can show

[ exp’(u + t(v — u))|| = ||diag(exp(u + t(v — u)))]|
Omax (diag(exp(u + t(v — u))))
?elﬁz)]{eXp(ui +t(v; — uy))

IN

IN

max max{exp(v;), exp(u;)}
1€

< exp(R)

where the first step follows from deﬁif;m = diag(exp(z)), the second step follows from Fact C.2, the third step follows from

spectral norm of a diagonal matrix is the absolute value of its largest entry, the fourth step follows from ¢ € (0, 1), and the
last step follows from || exp(v)||eo < exp(||v]loo) < exp(||v]|2)- O

Fact C.8. Foru € R™, v € R",

ul|2, ||v]]l2 < R, where R > 0, we have
| exp(u) — exp(v)[2 < exp(R)[u — v]|2
Proof. We can show, for t € (0,1),

lexp(u) — exp(v)|l2 < [ exp’(u+ t(v = w))|| - [lu = vll2
< exp(R)[lu —vll2

where the first step follows from Fact C.6, the second step follows from Fact C.7. [
Fact C.9. Fora € R, b € R, a,b < R, where R > 0, we have

|exp(a) — exp(b)| < exp(R)|a — b|
Proof. We can show, for ¢t € (0, 1),

|exp(a) — exp(b)| = |exp/(a + (b — a))| - [a — b|
= [exp(a +1(b—a))|-|a -]
< max{exp(a),exp(b)} - |a — b
< exp(R)|u — v|
where the first step follows from Mean Value Theorem, the second step follows from Fact C.1, the third step follows from
t € (0,1), and the last step follows from a,b < R.
O



C.3. Lipschitz multiplication property
Our overall proofs of Lipschitz constant for k-mixture of Gaussians follow the idea from Fact below.

Fact C.10. If the following conditions hold
* fi(@) = fim)ll2 < L [l =yl

* R:=max;cpq | fi(2)]
Then, we have

k k
5@ - TL A <k-B" Lo -y,
i=1

i=1

Proof. We can show

k k
| Hfz(ﬁ) - Hfz(y)‘
i=1

=1

k-1 k-1
= |fx(x) H fi(z) = fe(y) H fi(y)

k—1 k—1
< | fr(z Hfz Hfz )+ 1 ( )Hﬁ(sv)—fk(y)Hfi(y)
3 =1
k—1
= |(fil(x H fi@)| + [ fily H fitz) = T £:))
=1
k—1 -
<L-fe—yla-RF'+R-| H filz) — Hﬁ-(y)
=1 1=1 e »
<L-fe—ylo- R+ R-(IL- |z —yl2-R* >+ R-| Hﬁ-(m)— Hﬁ-(y))
k—2 k—2 =
=2-L-[lz—ylo- R+ R[] file) - [] fiw)
=1 =1

<k R Lzl

where the first step follows from simple algebra, the second step follows from Fact C.2, the third step follows from rearranging
terms, the fourth step follows from the assumptions of the lemma, the fifth step follows from the same logic of above, the
sixth step follows from simple algebra, and the last step follows from the recursive process. O

D. Single Gaussian Case

In this section, we consider the continuous case of p;(z), which is the probability density function (pdf) of the input data x,
and also a function of time ¢. More specifically, we consider the cases when p;(x) is: (1) a single Gaussian where either the
mean is a function of time (Section D.1) or the covariance is a function of time (Section D.2), (2) a single Gaussian where
both the mean and the covariance are a function of time (Section D.3). And then, we compute the upper bound and Lipschitz

constant for the score function i.e. the gradient of log pdf < log E dlogp(z)

D.1. Case when the mean of p;(z) is a function of time

We start our calculation by a simple case. Consider p; such that

A A
Let pdf is R? — R denote p;. We have log(pdf()) is RY — R. Then, we can get gradient V log(pdf()) is a function of ¢
because of A (t14,I;). Inject z and y into the gradient function, then we are done.
Below we define the pdf for the continues case when the mean is a function of time.



Definition D.1. If the following conditions hold
o Letx € R%
e Lett € R andt > 0.

We define

1 1
pe(z) = 2n)i exp(—gllz = #143)

Further, we have

d 1
log pi(z) = —§1Og(277) - §||$ — t14]3

Below we calculate the score function of pdf for the continuous case when the mean is a function of time.

Lemma D.2. If the following conditions hold

o Let x € R,
e Lett e R, andt > 0.
Then,
dl
o8PuT) _ 4y,
dx

Proof. We can show

dlog pi(x) d, d 2
= = (~Zlog(2m) — = 1
i21() Loy Lo - 113)
1 d
=3 d*”x—tld”%
1
=tly—=z

where the first step follows from Definition D. 1, the second step follows from variables are independent, the third step follows
from Fact C.1, and the last step follows from simple algebra. O

Below we calculate the upper bound for the score function of pdf for continuous case when the mean is a function of time.

Lemma D.3 (Linear growth). If the following conditions hold

o Let x € R,
o [ett e R, andt > 0.
Then,

dlog p; ()

— =, < ¢t

| =R < b+ ol
Proof. We can show
Hdlogpt(x)

2 = llt1a — 2

<ltallz + [ = [l
<t |zl

dx

where the first step follows from Lemma D.2, the second step follows from Fact C.2, and the last step follows from simple
algebra. O

Below we calculate the Lipschitz constant for the score function of pdf for continuous case when the mean is a function
of time.



Lemma D.4 (Lipschitz). If the following conditions hold
o Letx,T € R%

o Jett e R andt > 0.

Then,

”dlogpt(w) _ dlogp(z)

— =|r—=
X 2L ), = )7 - ally

Proof. We can show

H dlogpi(z)  dlogp(x)

e & 2 =t1a —z — (t1a — T)|2

= |7 — [l

where the first step follows from Lemma D.2, and the last step follows from simple algebra.

D.2. Case when the covariance of p;(z) is a function of time

Below we define the pdf for continuous case when the covariance is a function of time.

Definition D.5. If the following conditions hold
o Letx € R%.
o Jett € R andt > 0.

We define

1 1
pi(z) == WGXP(—EHCU - 1d|\§)

Further, we have

1 d 1
log p () = 3 logt — §1Og(277) - %Hx —14)13

Below we calculate the score function of pdf for continuous case when the covariance is a function of time.

Lemma D.6. Ifthe following conditions hold

o Let x € R,
e Lett e R, andt > 0.
Then,
dlogpi(x) 1
o\ 21, —
dx t( 4= 7)
Proof. We can show
dlogpi(z) d, 1 d 1 9
—=— = —(—=logt — = log(27) — —||lz — 1
o 4p g lost — 5 log(2m) — - lo — 1all2)
1 d
= — — .z —1y|?
o =l = 1al3
1
= - — . 2(xz—-1
5 2@ 1a)
:*(ld*l‘)

where the first step follows from Definition D.5, the second step follows from variables are independent, the third step follows

from Fact C.1, and the last step follows from simple algebra.

O

Below we calculate the upper bound of the score function of pdf for the continuous case when the covariance is a function

of time.



Lemma D.7 (Linear growth). If the following conditions hold

o Letz € R4,
o Jett e R andt > 0.
Then,
jePe@)y Ly ap)
— - x
dz 2= t 2

Proof. We can show

—E ), = II* a =22

21, —

21 1~ 2l
Sy — 2

= - —x
¢ d 2
1

< 201l + 1|~ 2l2)
1

= 20+ [l

where the first step follows from Lemma D.6, the second step follows from Fact C.2, the third step follows from ¢ > 0, the
fourth step follows from Fact C.2, and the last step follows from simple algebra. O

Below we calculate the Lipschitz constant of the score function of pdf for continuous case when the covariance is a
function of time.

Lemma D.8 (Lipschitz). If the following conditions hold
o Letx,T € R%
o Jett e R andt > 0.

Then,
dlogpi(z) dlogpi(z), 1 ~
| S8R 2D, = e
Proof. We can show
dlogpi(z)  dlogp:(z) 1
=|=(1g—2)— =(14—
| S2ER B2 ), — (10— 2) — (10— B
= I;GE o)l
= Ll -3
= P X ZI|l2

where the first step follows from Lemma D.6, the second step follows from simple algebra, the third step follows from
Fact C.2. O

D.3. A general version for single Gaussian

Now we combine the previous results by calculate a slightly more complex case. Consider p; such that

— P =
pe(z) w,NN(M(ﬁ);u))[w ’

where (t) € RY, %(t) € R4*? and they are derivative to ¢ and (¢) is a symmetric p.s.d. matrix whose the smallest singular
value is always larger than a fixed op,i, > 0.

Definition D.9. If the following conditions hold
o Letx € R%



e Lett e R, andt > 0.
We define

1
Pe®) = 57 den(m ()

1 _
17z exP(—5(z — u(®) () @ = u(t)))-
Further, we have
d 1 1 T 4
log () = —5 log(2m) — S logdet(S(1)) — 3 (& — u(8)) TS(0)" (& = (1)
Below we calculate the score function of pdf for continuous case when both the mean and covariance are a function of

time.

Lemma D.10. [f the following conditions hold
o Letx € R

e Lett e R, andt > 0.

Then,

BPUD) )0~ (1)

Proof. We can show

dl%it(z) = % glog(%) - %logdet(E(t)) - %(x — () T2 (@ - p(t))
- % : %(x — () TS@) " @ — p(t))
- _ % 2% (1) Ha — pu(t))

= —B(t) " (z - p(t))

where the first step follows from Definition D.9, the second step follows from Fact C.1, the third step follows from Fact C.3,
and the last step follows from simple algebra. O

Below we calculate the upper bound of the score function of pdf for continuous case when both the mean and covariance
is a function of time.

Lemma D.11 (Linear growth). If the following conditions hold

o Letz € R%.
o Jett € R andt > 0.
Then,
dlog () 1
< . t

I3 < oy (Ol )
Proof. We can show

dlog pi(z) -

e R RO

<=7 Ml — ()2
1@ e = u(®)ll2

1

S om0 [ = p(®)ll2
1

S om0 (lzll2 + 1 = w(®)]2)
1

= sy (Ol + llall2)

where the first step follows from Lemma D.10, the second step follows from Fact C.2, the third step follows from Fact C.2,
the fourth step follows from Fact C.2, the fifth step follows from Fact C.2, and the last step follows from Fact C.2. O



Below we calculate the Lipschitz constant of the score function of pdf for continuous case when both the mean and
covariance are a function of time.

Lemma D.12 (Lipschitz). If the following conditions hold
o Letz,T € R%
o Lett e R, andt > 0.

Then,
dlogpi(x)  dlogp:(7) ~
_ < . _
I— o l2< —0) [l — 2|2
Proof. We can show
dlogpi(z)  dlogp:(7) - 1
I - =2 = || = 27Nz - ut) = (=Z) 1@ — u(®)]2
dx dx
= =2®) " (@ - D)2
<I=2O7 llz = 22
-7
=—— |z —2
a'min(z(t)) 2
where the first step follows from Lemma D.10, the second step follows from simple algebra, the third step follows from
Fact C.2, and the last step follows from Fact C.2. [

E. A General Version for Two Gaussian

In this section, we compute the linear growth and Lipschitz constant for a mixture of 2 Gaussian where both the mean and

covariance are a function of time. The organization of this section is as follows:

* Section E.1 defines the probability density function (pdf) p;(z) that we use, which is a mixture of 2 Gaussian.

¢ Section E.2 provides lemmas that are used for calculation of the score function i.e. gradient of the log pdf dl%i“(w).

* Section E.3 provides the expression of the score function.

* Section E.4 provides lemmas that are used for calculation of the upper bound of the score function.

» Section E.5 provides the expression of the upper bound of the score function.

* Section E.6 provides lemmas of upper bound for some base functions that are used for calculation of the Lipschitz constant
of the score function.

* Section E.7 provides lemmas of Lipschitz constant for some base functions that are used for calculation of the Lipschitz
constant of the score function.

* Section E.8 provides lemmas of Lipschitz constant for f(x) that are used for calculation of the Lipschitz constant of the
score function.

* Section E.9 provides lemmas of Lipschitz constant for g(x) that are used for calculation of the Lipschitz constant of the
score function.

* Section E.10 provides the expression of the Lipschitz constant of the score function.

First, we define the following. Let a(t) € (0, 1) and also is a function of time ¢. Consider p; such that

pi(x) = 7 = 1]

Pr
I’Na(t)/\f(ul(t),El(t))+(1—0¢(t)))/\/(#2(t)»22(t))[

where j11(t), p2(t) € R%, 3 (t), Ba(t) € R¥*4 and they are derivative to ¢ and 1 (¢), X (t) is a symmetric p.s.d. matrix
whose the smallest singular value is always larger than a fixed value op,;, > 0.
For further simplicity of calculation, we denote a.(t) to be cv.

E.1. Definitions

Below we define function /N7 and Ns.

Definition E.1. If the following conditions hold
o Letx € R%
e Lett e R, andt > 0.



We define

Ni(@) = G a7 SR 5@ — () B0 = m(0)
and
1 1 T -1
Na(w) = s qarrsayy P 5@ — halt) Bl — pa(0)

It’s clearly to see that N; < 7z since N;(z) takes maximum when x = ;.

1
(2m) 272 det (34 (1))
Below we define the pdf for 2 mixtures of Gaussians.

Definition E.2. [f the following conditions hold
o Letx € R%

o Jett e R andt > 0.

o Let € Rand a € (0,1).

o Let N1(x), No(x) be defined as Definition E. 1.

We define
p(e) = ey P 5@~ m ) B0 i)+
1l-«a 1

BT Gy g (7 e ()™ o — o)
This can be further rewritten as follows:
pi(x) = aNy(z) + (1 — a)Na(z)
Further, we have
log pi(x) = log(aNi(z) + (1 — a)Na(z))
E.2. Lemmas for calculation of the score function

This subsection describes lemmas that are used for further calculation of the score function.
This lemma calculates the gradient of function V;.

Lemma E.3. Ifthe following conditions hold

o Letz € R%

o Jett € R andt > 0.

e Leta € Rand a € (0,1).

o Let Ni(x), Na(z) be defined as Definition E. 1.
Then, fori € {1,2}, we have

d]\gf) = Ni(2)(=Zi(t) " (@ — pi(t)))
Proof. We can show
dNi T d 1 1 —1
dfﬁ ) _ a( T AOIE eXp(—g(m — () TSi() " (@ — pa(t))))
= N e )0  l0)

= Nila)(— - 25400 — 1)

= Ni(z)(=2i(t) "Nz — (1))

where the first step follows from Definition E.1, the second step follows from Fact C.1, the third step follows from Fact C.3,
and the last step follows from simple algebra. O



This lemma calculates the gradient of function p;(z).

Lemma E.4. [f the following conditions hold

e Letz € R%

e Lett e R, andt > 0.

o Leta € Rand a € (0,1).

Let pi(x) be defined as Definition E.2.

Let N1(x), Nao(x) be defined as Definition E. 1.
Then,

L) Ny ) (a0 (o (1) + (1~ @) Na(a) (- al0) (& )

Proof. We can show

W) LNy (@) + (1 o)
- a%]\ﬁ(l‘) +(1- O‘>%Ng(m)

= alNi (2)(=Z1(t) " (@ — pa (1)) + (1 — ) Na(@) (= 22(t) " (z — p2(t)))

where the first step follows from Definition E.2, the second step follows from Fact C.1, and the last step follows from
Lemma E.3. [

E.3. Calculation of the score function

Below we define f(x) and g(z) that simplify further calculation.

Definition E.5. For further simplicity, we define the following functions:
If the following conditions hold

o Letx € R%

e Lett € R, andt > 0.

e Letaw € Rand o € (0,1).

o Let N1(x), No(x) be defined as Definition E. 1.

We define
o alN:(z)
J@) = N @+ (=)
and
g(x) — (1 - Oé)NQ(fE)

aNi(z) 4+ (1 — a)Na(x)
And it’s clearly to see that 0 < f(z) < 1,0 < g(x) < land f(z) + g(x) = 1.
This lemma calculates the score function.

Lemma E.6. If the following conditions hold

o Letx € R

o Lett e R, andt > 0.

e Letaw € Rand o € (0,1).

Let p(x) be defined as Definition E.2.

Let Ny(z), No(x) be defined as Definition E. 1.

Let f(x), g(x) be defined as Definition E.5.
Then,

dlogpi(z) _ aN(@)(=E1(t) "z —m(®)) | (1= )Na(@)(=Ea(H) "} (z = pa(t)))
dz alNi(z) + (1 — a)Na(x) alNi(z) + (1 — a)Na(x)



Proof. We can show

dlogpi(z)  dlogp:(x) dps(x)

dx dp: () dz
_ 1 dpi(x)
pi(z) dx
= ptzx) (N1 (2) (=21 (1) "z — (1)) + (1 = @) Na(2)(~Za() " (& — pa(1))))
_aNi(@)(=%1() "z — u(?))) L a= a)Na(2)(=%2(t) ! (z — pa(t)))
aNi(z) 4+ (1 — a)Na(x) aNi(z) 4+ (1 — a)Na(x)

= f(@)(=21(t) " (@ — pa (1) + 9(2) (= D2() 7 (2 — (1))

where the first step follows from Fact C.1, the second step follows from Fact C.1, the third step follows from Lemma E.4, the
fourth step follows from Definition E.2 and the last step follows from Definition E.5.
O

E.4. Lemmas for the calculation of the upper bound of the score function

This section provides lemmas that are used in calculation of upper bound of the score function.
This lemma calculates the upper bound of function || — ;(t) =1 (z — ;()) ]|

Lemma E.7. If the following conditions hold
o Letx € R%
e Lett e R, andt > 0.

Then, for each i € {1,2}, we have

I =Si®) @ — ()2 < . e (zll2 + llma(®)l2)

Umin(zi (t

Proof. We can show

I=%i)" @ = a2 < | = Z®) 7 - o = pat)]2

— i)Y -l — g2
- ;)) N = u®)l

Omin (ZZ (t
1
< —— Uzl + 1 = pi(®)ll2)
Omin(Zi(t))
1
= —— = Ulzllz + [[ri(@)]l2)
Omin(Xi(t))
where the first step follows from Fact C.2, the second step follows from Fact C.2, the third step follows from Fact C.2, the
fourth step follows from Fact C.2, and the last step follows from simple algebra. O

E.S. Upper bound of the score function

This lemma calculates the upper bound of the score function.

Lemma E.8 (Linear growth). If the following conditions hold
o Letz € R%

o Jett € R andt > 0.

o Letaw € Rand a € (0,1).

Let pi(x) be defined as Definition E.2.

Let f(x), g(x) be defined as Definition E.5.

o Let Opin := min{omin(X1(t)), omin (X2(t))}-

* Let pimax := max{[|u1(t)ll2, |2 (t)]|2, 1}.



Then,

T N2 < i max - (14 [J2)

Proof. We can show

||dl%it(x)\\2 = £ (@) (=Z1(t) " & = pa (1) + g(a) (=Za () "z — p2(1)) |2
< (@) (=16 @ — @)z + lg(@) (=E2(8) " (& — p2(t))2]l2
< max | = 2i(t) "z — pa (1))l

1
< %%(m “(llzll2 + s ()2))

< Ot (max + [|2]]2)
< U;iln *Hmax - (14 [[2]]2)

where the first step follows from Lemma E.6, the second step follows from Fact C.2, the third step follows from f(z)+g(z) =
1 and f(z), g(x) > 0, the fourth step follows from Lemma E.7, the fifth step follows from definition of fiyax and opmin, and
the last step follows from pimax > 1. [

E.6. Lemmas for Lipschitz calculation: upper bound of base functions

This section provides the lemmas of bounds of base functions that are used in calculation of Lipschitz of the score function.
This lemma calculate the upper bound of the function || — 3;(¢) "t (z — pi(t))||2.

Lemma E.9. Ifthe following conditions hold

o Letx € RY

o Lett e R, andt > 0.

o Let ||z — p;(t)||2 < R, where R > 1, for each i € {1,2}.
Then, for each i € {1,2}, we have

| =Si() " (@ — pa(®)]l2 < T (Za(0)

Proof. We can show

| = S0 @ = @) 2 < | = So@) " -l — pa(t)]l2
S T TS
Umin(zi(t)) ’
R

= G (5i(0)

where the first step follows from Fact C.2, the second step follows from Fact C.2, and the last step follows from ||z —p; (t)||2 <
R.

This lemma calculate the lower bound of the function (z — p;(¢)) "2 (t) " (z — 14 (t)).

Lemma E.10. [fthe following conditions hold

o Letz € R%

o Lett e R, andt > 0.

o Let ||x — pi(t)||2 < R, where R > 1, for each i € {1,2}.

o Let ||x — pi(t)||2 > B, where B € (0,0.1), for each i € {1,2}.
Then,

(2= pi(®) T 8i(0) 7 (& — i) 2 s



Proof. We can show
LHS > [|lz — i (8)|3 - omin (Zi(8) ™)

, 1
:W—uﬂmm;;gﬁﬁﬁ
62

= Omax (Ei (t))

where the first step follows from Fact C.2, the second step follows from Fact C.2, and the last step follows from ||z —p;(¢)||2 >

B.
This lemma calculate the upper bound of the function exp(—34 (z — 11;(£)) "5 () ™ (@ — pi(t))).

Lemma E.11. [fthe following conditions hold

s Letz € R4

e Lett €c R andt > 0.

o Let ||z — p;(t)||2 < R, where R > 1, for each i € {1,2}.

o Let ||z — p;(t)||2 > B, where 5 € (0,0.1), foreach i € {1,2}.

Then,
exp(~ 5 (& — (1) 50w = 1) < expl— D)
2 - 20 max (2 (t))
Proof. We can show
1 _
LHS = exp(— (@ — us(t) TSi(t) ™ (& = us(1)))
BQ

< exp(———=——~

S el )
where the first step follows from Fact C.2, the second step follows from Lemma E.10. O

E.7. Lemmas for Lipschitz calculation: Lipschitz constant of base functions

This section provides the lemmas of Lipschitz constant of base functions that are used in calculation of Lipschitz of the score
function.
This lemma calculates Lipschitz constant of function || — ;(¢) = (z — p;(t)) — (=3:(t) "1 (@ — i (1)) 2-

Lemma E.12. If the following conditions hold
o Letz,7 € R
o Lett e R, andt > 0.

Then, fori € {1,2}, we have

~ 1 ~
=St = 1)~ (Bl F = Ol < s -l —
Proof. We can show
LHS = || = Zi(t) " (z — 2) |2
< =@~ lle =7l
1 ~
) 1
where the first step follows from simple algebra, the second step follows from Fact C.2, and the last step follows from
Fact C.2. O

This lemma calculates Lipschitz constant of function | — 3 (z— 11;(£)) TS (£) (@ — s () — (— 3 (T — s (1)) TS (1) ~H (@ —

pi(t)))]-



Lemma E.13. [fthe following conditions hold

o Letx,T € R%

e Lett € R, andt > 0.

o Let ||z — pi(t)]]2 < wi(t)||2 < R, where R > 1, for each i € {1,2}.
Then, for each i € {1,2}, we have

= 5o = mE) TR @ = () — (—5(F ~ s O) )@ = )] € s -l =
Proof. We can show
LHS < |~ & (& — () T80 (& — pa(t)) — (5 — a(0)TSul0) @ — (1)
= g — ) TS0 E  ps0) — (5~ pse) TS E — )

I o= m) S =) + |- =B TR E - ()

S%MEM)qx—m(Mbe—ﬂb+fH2()(x—@h 13 — i)l
1 1
<5y Bl g IO @ =Dl R
1 1 - 1 . ~
=3 Tmin (i (t)) Bl =2l + 2 om0 |z —Z|2- R
: Nl — 2|
amln(zi(t)) 2

where the first step follows from Fact C.2, the second step follows from simple algebra, the third step follows from Fact C.2,
the fourth step follows from ||z — p;(¢)||2 < R, || — pi(t)||2 < R, the fifth step follows from Lemma E.12, and the last step
follows from simple algebra. O

This lemma calculates Lipschitz constant of function | N;(z) — N;(Z)|.

Lemma E.14. [fthe following conditions hold

o Letx,T € R%

o Jett e R andt > 0.

Let N1(z), No(z) be defined as Definition E. 1.

o Let ||lx — pi(t)||l2 < R, where R > 1, for each i € {1,2}.

Let ||x — p;(t)||2 > B, where B € (0,0.1), for each i € {1,2}.
Then, for each i € {1,2}, we have

L]

~ 1 ﬁg 1t
NS G @077 ™ 2 (0)) G (50)

|Ni(z) —

Proof. We can show

|N;(z) — N;(Z)] = | (2m) 172 det(Zi(t))lﬂ exp(_%(ir — ()2 (@ — (1))
~ TR P 3 — mO) S E ()

T (2m)d2 det(zi(t))l/Z | GXP(—%(fE — () TSi() " @ — (1))
— exp(—5 (F — s(0) T Zil0) 7 F — (1))

- 1 B
= (2m)4/2 det(3;(t))1/2 'exp(_m

)



= o )50~ pa(t) — (5 F — palt) TS0 G~ )

< 1 exp(— ) a3
. X — . . —
= 22 det(S0) 72 TP 200 (5 (0)) G (Bi(8)) 2
where the first step follows from Definition E.1, the second step follows from simple algebra, the third step follows from
Fact C.9, and the last step follows from Lemma E.11. O

This lemma calculates Lipschitz constant of function [Ny (x) + (1 — a)Na(z) — (aN1(Z) + (1 — a) N2 (2))].

Lemma E.15. [f the following conditions hold
o Letz,T € R%
o Lett e R, andt > 0.
o Let Ni(x), Na(z) be defined as Definition E. .
o Letaw € Rand a € (0,1).
o Let ||z — p;i(t)||2 < R, where R > 1, for each i € {1,2}.
o Let ||z — p;(t)||2 > B, where 5 € (0,0.1), foreach i € {1,2}.
o Let opmin := min{amin(El(t)), Umin(zg(t))}.
o Let 0oy := Max{omax (21 (%)), Omax(S2(¢))}.
o Let detyiy := min{det(X1(t)), det(Z2(t)) }-
Then, we have

v ( p?
(2m)4/2 det /2 P

[aN1(z) + (1 = @) Na(z) — (aN1(Z) + (1 — ) N2(2))] <

) .

— | — f 2
2Umax Omin H ||
Proof. We can show

LHS = |aNy(z) — aN1(Z) + (1 — a)Na(z) — (1 — a) N2(Z)|
< a|Ny(z) = Ni(2)] + (1 — ) |[Na(z) — Na(2))|

o 32 R N
= @ et )2 P 2 @) a1
11—« 52 B
* (QW)d/2 det(EQ(t))l/z . exp(_QUmax(EZ(t))) . O'min(EZ(t)) . Hx a xH2
< oy : -exp(— Ch ) i Nz = 2
(27)4/2 Gcl2] det(X;(t))1/2 2omm (51 (1)) T (Zi (D)
1 B? R

) .

2O'max Omin

exp( =22

S - .

(2m)/2 det /2
where the first step follows from simple algebra, the second step follows from Fact C.2, the third step follows from
Lemma E. 14, the fourth step follows from « € (0, 1), and the last step follows from the definition of detin, Omax; Omin-

This lemma calculates Lipschitz constant of function |(aNy(x) + (1 — a)Na(z)) ™1 — (aN1(Z) + (1 — a)No(Z)) 71|

Lemma E.16. If the following conditions hold

o Letx,T € R%

e Lett e R, andt > 0.

o Let N1(x), No(x) be defined as Definition E. 1.

e Letaw € Rand o € (0,1).

o Let ||z — p;(t)||2 < R, where R > 1, for each i € {1,2}.
o Let ||x — pi(t)||2 > B, where B € (0,0.1), for each i € {1,2}.
e Let aNy(z) + (1 — a)No(x) > =, where v € (0,0.1).

o Let 0pin := min{omin(X1(t)), omin (X2(¢))}-

o Let 0pax := Max{0max(21(t)), Omax(X2(t))}.

o Let detpi, := min{det(X1(t)), det(Z2(2)) }-



Then,

(N1 (2) + (1 = a)Na(2)) ™" = (aN1(Z) + (1 — &) Na(T)) 7|
o - exp(— g2 ) R
(2m)d/2 det /2 P

20rnax Omin
min

< 7_2

Proof. We can show

LHS < (aNy(z) + (1 — a)Na(z)) ™' - (aN1(Z) + (1 — a)No(Z))
1

“|laNi(z) + (1 = a)Na(z) — (N1 () + (1 — @) Na(2))]
<97 JalNi(z) + (1= ) Na(@) — (N1 (@) + (1 — a) Na(T))]
_ 1 B R ~
g ’y 2 (27T)d/2 detin/jl . exp(_zamax) . Omin . ||:E a 1.”2

where the first step follows from simple algebra, the second step follows from aNy(x) 4+ (1 — o) Na(z) > +, and the last
step follows from Lemma E.15. O

E.8. Lemmas for Lipschitz calculation: f(x)

This lemma calculates Lipschitz constant of function | f(x) — f(Z)].

Lemma E.17. If the following conditions hold
o Letx,T € R%
e [ett e R, andt > 0.
o Let N1(x), No(x) be defined as Definition E. 1.
o Let f(x) be defined as Definition E.S5.
e Leta € Rand a € (0,1).
o Let ||z — p;(t)||2 < R, where R > 1, for each i € {1,2}.
o Let ||z — p;(t)||2 > B, where 8 € (0,0.1), for each i € {1,2}.
o Let aNy(z) + (1 — o) Na(x) > =, where v € (0,0.1).
o Let 0pmin := min{omin (X1 (%)), omin (Z2(2)) }-
o Let 0oy := max{omax (21 (%)), omax(Z2(¢))}.
o Let detyiy := min{det(X1(t)), det(Z2(2)) }-
Then,

1 N 1 ) - exp( B2 R
X —_ .
(2m)? detmin (2m)d/2 det/? xp

min

f(z) = f@)] <2072 (

Proof. We can show

i aNy(z) aN, ()

@) =@ =T (i —a)Na(z) a1 (@) + (1 AL
< aNi(z) B aNi(x) |
~aNi(z)+ (1 —a)Na(z)  alNi(Z) + (1 — a)Na(7)

ClNl(LC) OZNl(E)

M T a-aMmE  aMm@ T 0 —a)N@)

= [Ni(2)] - [(@N1(z) + (1 = a)Na(2)) ™" = (aN1(Z) + (1 — a)Na(@)) 7|
+a - |Ni(2) = Ni(@)] - [(aN1 (@) + (1 — ) No (@) |
where the first step follows from Definition E.5, the second step follows from Fact C.2, and the last step follows from simple

algebra.
For the first term in the above, we have

a- [N (@)] - [(aN1 (@) + (1 = a)Na(2)) ™ = (aN1(Z) + (1 = a) Na(Z)) |



1

S e @M (e) + (1 - (o)™ — (@M@ + (1 - ) Nel@) |
1 2L e ) g
= a2 pizaet 2 T 2o g
_ 1 B2 R ~
SO e P ) g ¢

where the first step follows from Ny (z) < ( the second step follows from Lemma E.16 and the last step

1
2m) /2 det (21 (£)) 172
follows from definition of det,y;y,.

For the second term in the above, we have

a - [Ny(z) = N1 ()] - [(aN1(Z) + (1 — o) No(2)) 7|
<a-yh Ny (@) — Ny (T)]
1 B2 R
(2m) 2 det (S, ()12 'eXp(*zamax(zla))) " Tmm(21(1))

ot Nl — 3l (12

where the first step follows from aN1(z) + (1 — @) Na(x) > , the second step follows from Lemma E.15.
Combining Eq. (11) and Eq. (12) together, we have

- _ 32 R ~
_ <o-~N"2.____ - . _ . e —
@)= @] € a7 e exp(—gT—) - o=
+a-y7L. 1 - exp(— B2 ). R e — 7l
(27)4/2 det (X (t))1/2 20max(Z1(1))" omin(Z1(¢))
_ 1 52 R ~
<o~y 2o - . _ . . _
=47 (27T)ddetmin exp( 2Umax) Omin Hx I||2
1 B2 R .
—1
+a-y 'W-exp(_QJmax)' oo |z — 2|2
_ 1 1 B2 R .
<2077 ( R R i

2a'max Omin

(27)9 detmin + (2r)d/2 detrln/ii

where the first step follows from the bound of the first term and the second term, the second step follows from the definition
of detmin, Omax; Omin» and the third step follows from v < 0.1. O

This lemma calculates Lipschitz constant of function || f(z)(—X1(t) " (z — p1(2))) — f(@)(=21(t) 2@ — pa (1)) |2

Lemma E.18. If the following conditions hold
o Letz,7 € R
o Lett e R, andt > 0.
o Let Ni(x), Ny(z) be defined as Definition E. .
o Let f(x) be defined as Definition E.5.
e Leta € Rand a € (0,1).
o Let ||z — pi(t)||2 < R, where R > 1, for each i € {1,2}.
o Let ||z — p;(t)||2 > B, where 5 € (0,0.1), foreach i € {1,2}.
o Let aNy(z) + (1 — o) No(x) >+, where v € (0,0.1).
o Let 0ppin := min{omin(X1(t)), omin (Z2(2)) }-
o Let 0oy := Max{0max (21 (%)), Omax(S2(t))}.
o Let detyip := min{det(X1(t)), det(Z2(t)) }-
Then, we have

1£ (@) (=21(t) " (@ = m () = F@)(-Z1() '@ = a(1)))l2
1 32 R
1/2 ) : exp( :

min

< 20 -~ 2. 2~
(O'min ey ((27r)”ldetmin * (2)%/2 det )%) -z — 2|2

20111ax Omin



Proof. We can show

where the first step follows from Fact C.2, the second step follows from Fact C.2.
For the first term in the above, we have

[f@)] IS0 @ = () = (=510 7@ = m(®))l2

< (=21 e — (1) — (=Z1(8) 1@ — pa ()))]]2
1 -
N N () B 4

where the first step follows from f(z) < 1, the second step follows from Lemma E.12.
For the second term in the above, we have

[f(@) = f@)] | = Z:) 7@ — (@)l

R ~
<——|f(x) — f(x
< oy M@ - 1@
R _ 1 1 B2 ~
< . 9q-~2. . — . Nz — 14
= omin(21(%)) o ((27r)ddetmin + (27)/2 detin/ii) exp/ 20’max) Omin Iz = Zll2 (19
where the first step follows from Lemma E.9, the second step follows from Lemma E.17.
Combining Eq. (13) and Eq. (14) together, we have
£ (2)(=21() " (@ = pa (1)) = F@)(=Z1(8) (T — pa (1)) |2
1 ~
< |l —x
= Umin(zl(t)) || ||2
R 1 1 B? R _
. 9q-~2. . — . N =
* O'min(zl(t)) “ ((27‘—)ddetmin - (27T)d/2 detin/ii) exp( 2Umax) Omin ”x x||2
1 -
< —lz =22
1 1 B2 R ~
2q-~"2. . — . Nz —
+ Omin “ ((QW)ddetmin * (27T)d/2 detrln/i) exp( 2Crrnax) Omin Hx $||2
1 1 B2 R -
= 20 -~ 2. . — . 2y g —
G 207 g * g ) () I =l

where the first step follows from the bound of the first term and the second term, the second step follows from the definition
of detymin, Omax; Omin, and the last step follows from simple algebra. O

E.9. Lemmas for Lipschitz calculation: ¢(z)

This lemma calculates Lipschitz constant of function |g(x) — ¢(Z)|.

Lemma E.19. [fthe following conditions hold

o Letx,T € R%

e Lett e R, andt > 0.

Let N1(z), No(z) be defined as Definition E. 1.
Let g(x) be defined as Definition E.5.

e Letow € Rand o € (0,1).

L]



Let ||x — pi(t)||2 < R, where R > 1, for each i € {1,2}.

Let ||x — pi(t)||2 > B, where 3 € (0,0.1), for each i € {1,2}.
e Let aNy(z) + (1 — a)No(x) > =, where v € (0,0.1).

o Let omin := min{omin(21(t)), omin (X2(¢))}

o Let 0pax := max{0max(X1(t)), Omax(T2(t))}.

o Let detp, := min{det(X1(t)), det(X2(2)) }-

Then,

. ! B2 . R
(27)4 detmin * (2m)d/2 detlln/ii) -exp(— )

20max Omin

l9(2) — 9@ < 2(1 —a) -7y ( =zl

Proof. We can show

_ (1 — a)Ns(z) (1 - a)Ns(3)
l9) = 9@ = N o T O M@ aM@ + (= o) NG
| (1 —a)Na(2) 3 (1 —a)Na(z) |
~alNi(z) 4+ (1 —a)Na(x)  aNi(Z) + (1 — a)Na(T)
(1 —a)Na(z) (1 —a)Na(z)

+ — — — e~ —
‘aNl(x) + (1 —a)N2(Z)  aN(Z)+ (1 — a)Ng(x)I
= (1 =) [Na(2)] - [(aN1(2) + (1 = a)Na(2)) ™" = (aN1(@) + (1 = a) N2 (@)
+ (1= a) - [Na(2) = Nao(Z)] - [(@N1(Z) + (1 — @) No(2)) |
where the first step follows from Definition E.5, the second step follows from Fact C.2, and the last step follows from simple

algebra.
For the first term in the above, we have

(1= ) - [Na(@)] - [(aN1(2) + (1 = @) Na(2)) ™" = (aN1(Z) + (1 — ) Na (7)) ']

1 ~ ~
<U-0) oy @M@ + (- @Na@) ™ — (@Na(@) + (1 - ) Na(@) ™
1 _2 1 B? R ~
S0 i aam 2 " a2 " 2 v 1
2 R ~
<07 Gt ) W =

where the first step follows from N (z) the second step follows from Lemma E.16.

1
< (27) 472 det(22(¢))1/2 2
For the second term in the above, we have

(1—a)-|Ny(z) = Na(@)| - [(aN1(F) + (1 — a) Na(7)) |

< (1 —a) 77 [Na(2) = Na(2)]
. 1 B? R ~
stz e det (S )72 P 20 520)) S (B2 (D)) =l 1

where the first step follows from aN1(z) + (1 — @) Na(x) > ~, the second step follows from Lemma E.15.
Combining Eq. (15) and Eq. (16) together, we have

- 1 2 R -
|9($) - 9($)| < (1 - 0‘) "772 : m 'eXP(—2fmax) : O onin : ||$ - x||2
1 1 B2 R -
O i da @) S (50)) min(Za)
2
<-a)y? e ) B e F,

m 2Umax Omin



U
(27)d/2 det /2 P

1 1 82
(2m)? detmin + (2r)d/2 detrln/ii) rexp(—

+(l—a)-y "

) .

2Umax Omin

Nz =22

<2(1—a) 772 )

5 w7
Omax Omin

where the first step follows from the bound of the first term and the second term, the second step follows from the definition

of detmin, Omax, Omin, and the last step follows from v < 0.1.

O

This lemma calculates Lipschitz constant of function ||g(z)(—=32(t) "1 (x — p2(t))) — 9(Z)(=S2(t) 1@ — u2(t)))|l2.

Lemma E.20. [fthe following conditions hold
o Letz,7 € R%
e Lett e R, andt > 0.
o Let Ni(x), Na(z) be defined as Definition E. .
o Let g(x) be defined as Definition E.5.
o Letw € Rand a € (0,1).
o Let ||z — p;(t)||2 < R, where R > 1, for each i € {1,2}.
o Let ||lx — pi(t)||2 > B, where B € (0,0.1), for each i € {1,2}.
o Let aN1(z) + (1 — a)Na(z) > =, where v € (0,0.1).
o Let 0ppin := min{omin(X1(t)), omin (Z2(2)) }-
o Let 0pax := Max{0max(21(t)), Omax(S2(t))}.
o Let dety;, := min{det(X;(¢)), det(X2(¢))}-
Then, we have

lg(@)(=S2(8) " (@ = p2(1))) = 9@)(=S2() '@ = p2() 2

SV SR SN S S PP
R el
Omin @ (ZW)ddetmin (27T)d/2 detin/ii o

) (=22 e — F

2O—max Omin

<(

Proof. We can show

LHS < [|g(2) (=22 (t) (& — p2(t))) — g(2)(=Za(t) (T = pa(t))) |2
+ (@) (=22(6) 1@ = p2(t))) = F@)(=2(t) (T — p2(t)))l2
<lg(@)| - [(=22() " (@ — pa(t))) — (=Z2(t) " (F — pa(t))) 2
+lg(a) = g@)] - | = B2(t) (@ = p2(t))ll2

where the first step follows from Fact C.2, the second step follows from Fact C.2.
For the first term in the above, we have

l9@)] - 1(=22() 7 (@ = p2(t) = (=S2() 1@ = p2()) 2
I(=22(t)" (& = p2(t))) = (=Z2(t) 7' (@ — p2(t))) 12

1
Urnin(EQ(t))

where the first step follows from g(x) < 1, the second step follows from Lemma E.12.
For the second term in the above, we have

l9(x) = g(@)] - || = Z2(8) (@ — (1)) l2

R ~
< omm (2 (0) Jg(z) — g(z)]

«_ B
" Omin (22 (t))

IN

IN

e — 72

1 1 82 R
27)4 debmin + (2r)d/2 detrln/ii) rexp(= )

2Umax Omin

-2(1—a)~772-(( |z =22

where the first step follows from Lemma E.9, the second step follows from Lemma E.19.

a7

(18)



Combining Eq. (17) and Eq. (18) together, we have

lg(x)(=22(t) ™ (z — p2(1))) — g(@)(=S2(t) (@ — p2(t)))ll2

1 ~
<——llz—x
S o ) [ 2
R 1 1 B2 R _
. 9(1—a)-~"2. — . Nz —
+amin(22( ) ( )7 ((QW)ddetmiﬂ+(27T)d/2detlln/i) exp( 20max’  Omin Il =iz
1 ~
< lz — &l
Omin
R _ 1 1 B? R ~
21 —a)-~2. . — . N —
Rk L R C 2 el rwerrwer R L Rl Lt
1 1 1 32 R -
= 21 — ) -~ 2. . _ . 2 g —
G+ 20 =907 (e o o) o, ) (G L)) =l

where the first step follows from the bound of the first term and the second term, the second step follows from the definition
of detin, Omax, Omin, and the last step follows from simple algebra. O

E.10. Lipschitz constant of the score function

This lemma calculates the Lipschitz constant of the score funciton.

Lemma E.21 (Lipschitz). If the following conditions hold
o Letx,T € R%

e Lett e R, andt > 0.

o Let N1(x), No(x) be defined as Definition E. 1.

e Letaw € Rand e € (0,1).

o Let pi(x) be defined as Definition E.2.

o Let f(x), g(x) be defined as Definition E.5.

o Let ||z — pi(t)||2 < R, where R > 1, for each i € {1,2}.
o Let ||z — p;(t)||2 > B, where 5 € (0,0.1), foreach i € {1,2}.
o Let aNy(z) + (1 — a)No(x) >+, where v € (0,0.1).

o Let 0ppin := min{omin(X1(t)), omin (Z2(t)) }-

o Let 0oy := Max{0max(21(t)), Omax(Z2(¢))}.

o Let detyiy := min{det(XZ1(t)), det(Z2(t)) }-

Then,
dlogpi(z) dlogp: (T 2 2R? 1 1 2 .
|| ii ( ) a ig ( )H2 = (Umin M ’YQUr2nin ' ((27T)d detmin " (27T)d/2 detl/.2 ) . eXP(?Z Bmax)) . Hx a sz
Proof. We can show
LHS = || f(2)(=Z1(t) " (z — p1(8))) + g(a) (=Za() " (z — p2(t)))
—(f@ (SO 7HE = 1) + 9@ (=S2(8) 1 E = p2())) ]2
<[ f@) (=) @ = (1) = F@)(=Z1(6) 7@ — m (1)) ]2
+ llg(@) (=22 (t) " (@ = pa(1)) — g(@)(—Za(t) (@ — pa(1)))l2
S (O'mm * 2 772 ((27T)dldetmm * (271')d/21det1/2 ) ' exp(_Qfmax) . (ijjin)2) ' ||‘T a EEHQ
+ lg(x)(=22() " (= p2(1))) — g(@)(=2(t) (T — p2(1)))ll2
P ! exp(—5—) - (2 )2) - o =

+ . .
Omin (27T)d detmin (27‘(‘)d/2 det‘,[ln/lf1 ) 2Umax Omin
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B (Umin * V2ol ((QW)ddetmin " (2m)d/2 det,ln/ii) .exp(_Q max)) el

where the first step follows from Lemma E.6, the second step follows from Fact C.2, the third step follows from Lemma E. 18,
the fourth step follows from Lemma E.20, and the last step follows from simple algebra. O

F. A General Version for & Gaussian

In this section we consider a more general case of £ mixture of Gaussians.

¢ Section F.1 provides the definition for k£ mixture of Gaussians.

» Section F.2 provides the expression of the score function.

 Section F.3 provides the upper bound of the score function.

 Section F.4 provides lemmas that are used in further calculation of Lipschitz constant.
 Section F.5 provides the Lipschitz constant for £ mixture of Gaussians.

F.1. Definitions
Let i € [k]. Let o;(¢) € (0, 1), ZL 1 @;(t) =1, and is a function of time ¢. Consider p; such that

pi(z) = Pr [ = z]
o~ a (DN (i (1), 54 (1))

where 11;(t) € RY, $;(t) € R?*4 and they are derivative to ¢ and ¥;(¢) is a symmetric p.s.d. matrix whose the smallest
singular value is always larger than a fixed value oy,;, > 0.
Below we define the pdf for a single multivariate Gaussian.

Definition F.1. [f the following conditions hold
o Letz € R%
o Leti € [k].
e Lett e R, andt > 0.
We define

Nie) = a5 @ — )0 @ = (0)

This is the pdf of a single Gaussian so it’s clearly to see that 0 < N; < OEE since N;(x) takes maximum

1
(2m)4/2 det(Z
when = ;.

Below we define the pdf for k£ mixtures of Gaussians.

Definition F.2. If the following conditions hold
o Letx € RY
o Leti € [k]
o Jett e R andt > 0.
e Letoy(t) € B, S8 ay(t) = 1, and oy (t) € (0, 1).
 Let N;(x) be defined as Definition F.1.
We define

k
= Z (2m)1/2 det )E (t))1/2 exp(—%(m — () TZi() " (@ = ()
=1 *

This can be further rewritten as follows:



Further, we have

k
log pi(x) = log(z @;(t)Ni())

This lemma calculates the gradient of pdf for & mixture of Gaussians.

Lemma F.3. If the following conditions hold

o Letz € R%

o Leti € [k].

e Lett € R andt > 0.

e Let oy(t) € B, S8 a(t) = 1, and oy (t) € (0, 1).
 Let N;(x) be defined as Definition F.1.

Let pi(z) be defined as Definition F.2

We have
k
) 3 @OV )30 o )
Proof. We can show
dpe(z) d b
el PIGLIL
=3 P

()Ni(2)(=Zi() 7 (@ = (1))

1
- .
i M = 1l
[ [

)

8

where the first step follows from Definition F.2, the second step follows from Fact C.1, and the last step follows from
Lemma E.3.
O

Below we define f; that simplifies further calculation.

Definition F.4. [f the following conditions hold
o Letx € R
o Leti € [k].
o Jett € R andt > 0.
o Let oy(t) € R, S8 ay(t) = 1, and oy (t) € (0, 1).
* Let N;(x) be defined as Definition F.1.
For further simplicity, we define

(1) = _CONi@)
fz( ) Ef:l ai(t)Ni(Qf)

It’s clearly to see that 0 < f;(x) < 1 and Zle filx) =1
F.2. Calculation of the score function
This lemma calculates the score function for £ mixture of Gaussians.

Lemma FE.S. [fthe following conditions hold
o Letx € R%.
o Leti € [k].



e Lett e R, andt > 0.
Let o;(t) € R, Zle a;(t) =1, and o;(t) € (0,1).
Let N;(z) be defined as Definition F.1.
Let pi(x) be defined as Definition F.2.
Let f;(x) be defined as Definition F4.
We have

L]

dlos pi(z) Zfz 546 (@ — pi(8))

Proof. We can show

dlog ps(x) _ dlogpi(x) dps()

dx dp: () dz
1 dpi(a)

SF i) Ni(@)(~Zi(t) " (& — 1))
SF L i(t)Ni(x)

k
= 3 A@ES0 @ - m(e)

where the first step follows from Fact C.1, the second step follows from Fact C.1, the third step follows from Lemma F.3, the
fourth step follows from Definition F.2, and the last step follows from Definition F.4. O

F.3. Upper bound of the score function

This lemma calculates upper bound of the score function for £ mixture of Gaussians.

Lemma F.6. If the following conditions hold
o Letx € R%
o Leti € [k].
e Lett € R, andt > 0.
o Let a;(t) € R, Zle a;(t) =1, and a;(t) € (0,1).
o Let pi(x) be defined as Definition F.2.
o Let f;(x) be defined as Definition F.4.
o Let 0pin := min{omin(X1 (%)), 0min (Z2(t)), - - -, Omin (Zx(¢)) }
* Let pimax == max{1, [|p1(t)[l2, [[n2(@)ll2; -, [l (t)l|2}-
Then, we have

Ly < by i+ (L [al)

Proof. We can show

IZCTR —HZﬂ ()M — ua(6)]l»

IN

Zm)n =207 o = (02

?é?;i]( = %i(t) " (= — ()2

IN



1

S mex o) (lll2 + [l (®)]2)

< I:uln(,umax + HxHQ)
< Umm fimax + (1 + [|z[]2)

where the first step follows from Lemma F.5, the second step follows from triangle inequality, the third step follows from
Zle fi(z) =1 and f;(x) > 0, the fourth step follows from Lemma E.7, the fifth step follows from definition of fiy,x and
Omin» and the last step follows from piax > 1. O

F.4. Lemmas for Lipshitz calculation

This section provides lemmas for calculation of Lipschitz constant of the score function for £ mixture of Gaussians.
This lemma calculates Lipschitz constant of function | Z _1 o (t)N;i(x) — Zle a; (t)N; (Z)].

Lemma F.7. If the following conditions hold

o Letx,T € R%

o Leti € [k].

* Lett € R, andt>0

o Let a;(t) € R, Z _a;(t) =1, and a;(t) € (0,1).

» Let N;(x) be defined as Definition F.1.

o Let ||z — pi(t)|l2 < R, where R > 1, for each i € [k].

o Let ||z — pi(t)||2 = B, where 8 € (0,0.1), for each i € [k].

e Let Omin = min{amin(zl(t)) Umln(ZQ( )) Umln(zk(t))}
o Let 0pmax := max{omax(X1(t)), Omax (T2 (t )) s Omax (Zk(t))}
o Let detyy, := min{det(X1(¢)), det(X2(t)), . . det(Ek( N}

Then, we have

k k N 1 B? ~
|2 aultNile) = 3O <€ g el ) - e =
Proof. We can show
k
LHS =) ai(t)(Ni(x) — Ni(@))]
=1
k
< Zaz(t)u\fz(iﬁ) — Ni(z)]
1 ﬁQ R ~
< Zaz e ae S @) 7 P 2 @@ o)
- L QR S G S
= e o det (T ()2 TP 200 (5i(0) o (i)
1 8? ~
xp(— ) [l — 2|2

- e
N (27T)d/2 detlln/i?1 20 max Omin
where the first step follows from simple algebra, the second step follows from Fact C.2, the third step follows from
Lemma E.14, the fourth step follows from Zle a;(t) = 1, and a;(t) € (0,1), and the last step follows from the defi-
nition of detyin, Omax; Tmin- O

This lemma calculates Lipschitz constant of function |(Zf=1 a;(t)N;(z)) =t — (Zle a; (H)N; (7)) 7.

Lemma F.8. If the following conditions hold
o Letz,T € R%
o Leti € [k].



e Lett e R, andt > 0.

o Let oi(t) € R, Zle a;(t) =1, and o;(t) € (0,1).

o Let N;(x) be defined as Definition F.1.

o Let ||z — p;(t)||2 < R, where R > 1, for each i € [k].

o Let ||x — pi(®)|l2 > B, where 5 € (0,0.1), for each i € [k].
. Letz _1 ;i (t)Ni(x) > ~, where v € (0,0.1).

* Let opmin 1= mln{Umm(Z1( )) Umln(ZQ( ))7 . Umin( k(t))}
* Let omax := maX{O'maX(El(t)) UmaX(EQ(t)) Ulnax(zk(t))}
o Let detyiy, := min{det(X1(¢)), det(X2(¢)), . det(Ek(t))}
Then, we have
y t)N, -1 : HNA(TN L <~ 2 L B R ~
|(; Oéi( ) z(ﬂf)) - (; Oéi( ) 1(33)) | =7 m .exp(—20max) . p— . ||a? _ x||2

Proof. We can show

k k k k
LHS = (Z () Ny(z)) =" - (Z a; ()N (2)) " - | Z ;i (t)Ni(z) — Zai(t)Ni(fﬂ
k k
<72 Zai(t)Ni(x) - Zai(t)Ni(f)I

_ 1 B2 R
<y ————75 exp(— )
(27‘r)d/2 detm/in 20 max Omin

Nl = [l

where the first step follows from simple algebra, the second step follows from Z _, a;(t)Ni(z) > ~, and the last step
follows from Lemma F.7. O

This lemma calculates Lipschitz constant of function |f;(x) — f;(Z)].

Lemma F.9. If the following conditions hold

o Letz,T € R%

o Leti € [k].

o Jett e R andt > 0.

e Letoy(t) € R, SoF | ay(t) = 1, and oy (t) € (0, 1).

 Let N;(x) be defined as Definition F.1.

o Let f;(x) be defined as Definition F.4.

o Let ||z — pi(t)|l2 < R, where R > 1, for each i € [k].

o Let ||z — pi(t)||2 = B, where 8 € (0,0.1), for each i € [k].
o Let Zle a;(t)N;(x) >+, where y € (0,0.1).

o Let oppin := min{omin(X1(t)), omin (B2(2)), - -+ Omin (Zk(2)) }-
o Let 0oy := Max{omax(21(t)), Omax(XZ2(t)), - -+, Omax (Zk(£)) }.
* Let detpy := min{det(X;(t)), det(X2(t)), .. ., det(Ek( )}
Then, for each i € [k], we have
~ _9 1 32 R _
[fi(z) = fi(@)] < 204(t) -7~ - m 'eXP(—20maX) o |z — 2|2
Proof. We can show
k k
[fi(@) = fi(@)] = |evi(t) Ni(x) - (Z ai(t)Ni(2)) ™ — ai(t)Ni() - (Z ai(t)N; (@) 7]
k k

<Jai(B)Ni(z) - Qi) Ni(2) ™" = ai(O)Ni() - (Y aa(t)Ni()) |

=1 i=1



k
+ |041 z Zaz z - az(t)Nz(i) : (Z al(t)Nl(af))_”

k k
< ON@) - 1Y aiNi(w) ™" = (Y as)Ni(@) |
k
+ o) (Y (@) Vi (@) = Ni(@)

where the first step follows from Definition F.4, the second step follows from Fact C.2, and the last step follows from simple
algebra.
For the first term in the above, we have

k k
\(Z a;(t)Ni(2)) ™" — (Z ai () Ni(#) 7

k
<oult): Gy deﬁ s zaz M) = (i)

1 o 1 32 ~
< ay(t) - . . . _ . e —
=0 G aamm T a2 P 20 o 177

_ B2 R ~

where the first step follows from N;(z) < CISLTE det CROIEER the second step follows from Lemma F.8, and the last step
follows from definition of det,y;,.
For the second term in the above, we have

Oéi(t)(zk: ai(t)Ni(2)) " [Ni(z) — Ni(@))|
i=1
< ait) -y~ INi(z) - Ni(2))|
2
<o) GTRETTE P T @) e 17 .
where the first step follows from Z _, a;(t)N;(z) > ~, the second step follows from Lemma F.7.
Combining Eq. (19) and Eq. (20) together, we have
)~ B st 77 e (52— e,
2
+oay(t) -y (2m) 1/ det(Zi(t))lﬂ 'exp(_20maxﬁ(zi(t))) : Umin(];i(t)) Nl =22
< i) 7 e P ) = s
)1 el ) el
<2007 g+ G qe?) Pl ) ol

where the first step follows from the bound of the first term and the second term, the second step follows from the definition
of detmin, Omax; Omin, and the last step follows from v < 0.1. O

This lemma calculates Lipschitz constant of function || f; (z)(—3;(t) "1 (x — pi(t))) — £ (@) (=3:(t) (T — pi(t)))]]2.



Lemma F.10. [fthe following conditions hold

o Letx,T € R%

o Leti € [k].

e Lett e R, andt > 0.

« Letoy(t) € R, S8 (1) = 1, and oy (t) € (0, 1).

o Let N;(x) be defined as Definition F.1.

o Let f;(x) be defined as Definition F.4.

o Let ||z — p;i(t)||2 < R, where R > 1, for each i € [k].

o Let ||z — p;i(t)||2 > B, where 8 € (0,0.1), for each i € [k].
o Let Zle a;(t)N;(x) > v, where v € (0,0.1).

o Let 0pin := min{omin(X1 (%)), 0min (Z2(t)), - - -, Omin (Zk(£)) }
* Let 0max = Max{omax(X1(t)), omax(X2(t)), - - -, Omax(Zx(t)) }-
o Let detyy, := min{det(2(¢)), det(X2(¢)), . .., det(Ek( N}

Then, for each i € [k], we have

1£i(2) (=)™ (@ = (1)) = Fi@) (=S ()7 (@ = pa() ]2

i _ 1 1 B2 R
= (‘O—Ifj'n” *204(t) -y . ((27T)d detmin - (2m)d/2 detxln/ii) et a

5 —)2) -l 7]l
Jmax Umm

Proof. We can show

LHS < || £fi(2)(=2:(0) 7 (@ = wi(#))) = fil2)(=Zi() '@ = ps(t))]12
+ (@) (=S ()7 @ = pa(1)) = L@ (=Zi(0) 7@ — pa(1)))l2
<|fi(@)| - I(=%: @)~ 1( = pi(1))) = (=%i(t) 7@ — pa(1)))l2
+1fil@) = i@ =S ) 7@ = pa(t) 2

where the first step follows from Fact C.2, the second step follows from Fact C.2.
For the first term in the above, we have

[fi(@)] - 1(=Za) Nz = (1)) = (%)@ = (1))l
| fi(z)]
- Umin(zi(t))

where the first step follows from Lemma E.12.
For the second term in the above, we have

|fi@) = fi@)] - [ = 2:) 7' (@ = pa(t))ll2

e =22

< s i) = @)
2
< ﬁ 204(t) -7 ((%)dzetmm + (27r)d/21detrln/ii) .eXp(—QfmaX) : gfin Nl — 72
where the first step follows from Lemma E.9, the second step follows from Lemma F.9.
Combining Eq. (21) and Eq. (22) together, we have
1fi(@)(=Zi (&) (@ — mi(1) = Fi@)(=Zi() 7@ — wa(t))l2
i\L ~
< s e =3l
2
+ m 20u(t) 472 ((%)dgetmm + (QW)d/;deti{ii) : exp(—2fmax) T |z — |2
<Py,

Omin

21

(22)
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where the first step follows from the bound of the first term and the second term, the second step follows from the definition
of detyin, Omax; Omin, and the last step follows from simple algebra. O

F.5. Lipschitz constant of the score function

This lemma calculates Lipschitz constant of the score function for k£ mixture of Gaussians.

Lemma F.11. If the following conditions hold

o Letz,7 € R

o Leti € [k].

e Lett e R, andt > 0.

o Let oyi(t) € R, S8 ay(t) = 1, and oy (t) € (0, 1).

» Let N;(x) be defined as Definition F.1.

o Let pi(x) be defined as Definition F.2.

o Let f;(x) be defined as Definition F.4.

o Let ||x — pi(t)|l2 < R, where R > 1, for each i € [k].
o Let ||z — p;(t)||2 = B, where 8 € (0,0.1), for each i € [k].
o Let Zle a;(t)N;(x) >+, where y € (0,0.1).

o Let 0pin := min{omin (X1 (%)), omin (Z2(2)), - - -, Omin (Zx(£)) }
o Let 0oy := Max{omax(21(t)), Omax(X2(t)), - -+, Omax (Zk(£)) }.
o Let detpiy := min{det(X1(t)), det(X2(t)), . .., det(Tr(2))}-
Then, we have
dlogp:(x)  dlogp:(Z)
1 2R? 1 1 B2

<( ) - exp(— ) -l =l

Omin - 72Ur2nin . ((QW)ddetmin i (27T)d/2 detl/.2 20 max

Proof. We can show

LHS
k k
=1 fil@) (=i (&) (@ — pa(1))) — Z @@ = @)

k
|fi(x)] 2 1 1 B R -
< D 2 (1) - : . — . . —
B ;( Omin T 20i(0) ((27r)ddetmin + (27)4/2 detin/ii) exp( 20max) (Umin) )z =zl
1 2R? 1 1 82 N
- Tmin * FYQO-Enin . ((27T)ddetmin - (27T)d/2 detrln/i) | exp(_2 max)) . ”x B $||2

where the first step follows from Lemma F.5, the second step follows from triangle inequality, the third step follows from
Lemma F.10, and the last step follows from Zle |fi(x)] = Zle fi(z) =1and Zle a;(t) = 1. O

G. Tools From Previous Work

In this section, we present several key theoretical results from previous work that serve as building blocks for our analysis.
We begin with important assumptions about score-based diffusion models, followed by theorems establishing error bounds
for different numerical solvers.



Assumption G.1 (Lipschitz score, Assumption 1 in [13], page 6). For allt > 0, the score V log p, is L-Lipschitz.

Assumption G.2 (Second momentum bound, Assumption 2 in [13], page 6 and Assumption 2 in [10], page 6). We assume
that m3 := My := E,,[||z|3] < occ.

Assumption G.3 (Smooth data distributions, Assumption 4 in [10], page 10). The data distribution admits a density py €
C?(R%) and V log pg is L-Lipschitz, where C? means second-order differentiable.

Remark G.4. We can notice My = m%. The theorems from [10] use Ms for KL divergence. The theorems form [13] and
[14] use ma = \/m3 = \/Ms for total variance, because of Pinsker’s inequality (Lemma 5.3).

Each theorem presented below provides different perspectives on bounding the error between the learned distribution and
the target distribution. Theorem G.5 focuses on total variation distance for DDPM, while Theorems G.6 and G.7 analyze
KL divergence under different conditions. Theorems G.8 and G.9 establish bounds for the ODE-based solvers DPOM and
DPUM respectively. We first state a tool from previous work [13].

Theorem G.5 (DDPM, Theorem 2 in [13], page 7). Suppose that Assumptions G.1, G.2 and 5.1 hold. Let qr be the output
of DDPM algorithm at times T, and suppose that the step size h := T /N satisfies h < 1/L, where L > 1. Then, it holds
that

TV(qr,po) S v KL(po||N (0, 1)) exp(—T)

convergence of forward process
+ (LVdh + Lmah)V'T + VT
~——

discretization error score estimation error

Then, we state a tool from previous work [10].

Theorem G.6 (Theorem 1 in [10]). Suppose that Assumptions G.1, G.2, 5.1 hold. If L > 1, hy, < 1fork € [N]and T > 1,
using uniform discretization poznts yields the following: (1) Using Exponential Integrator scheme (8), we have KL(pg ||qT)

(My+d) exp(=T)+Te3+ dT L® I particular, choosing T = O(log(dMy/€2)) and N = ©(dT?L? /€2) makes this O(€2).
272
(2) Using the Euler-Maruyama scheme (7), we have KL(po||gr) S (Ms + d) exp(—T) + Te + T + g Ak

Theorem G.7 (Theorem 5 in [10], page 10). There is a universal constant K such that the following holds. Under Assump-

tions G.2, 5. ] and G.3 hold, by using the exponentially decreasing (then constant) step size hy, = ¢ min{max{t, %}, 1},e=

% < s the sampling dynamic (8) results in a distribution qr such that KL(po||qr) < (Mz + d) exp(=T) + Te} +

M%”. Choosing T = ©(log(dMz/€3)) and N = O(d*(T + log L)?/e3) makes this O(eo). In addition, for the
Euler-Maruyama scheme (7), the same bounds hold with an additional M, Zgzl h3 term.

Finally, we state a tool from previous work [14].

Theorem G.8 (DPOM, Theorem 2 in [14], page 6). Suppose that Assumptions G.1, G.2 and 5.1 hold. If Gr denotes the
output of DPOM (see Algorithm 1 in [14]) with early stopping. Then, it holds that

TV(Gr,po) S (Vd+ms) exp(=T) + L*Td"*hprea
+ L32Td 22 + LY ?Tey + €.

In particular, if we set T = ©(log(dm32/€2)), hprea = O( 725172 )> heorr = o( 754, and if the score estimation error satisfies
€0 < O( =), then we can obtain TV error € with a total iteration complexity of O(L3d/€2) steps.

Theorem G.9 (DPUM, Theorem 3 in [14], page 7). Suppose that Assumptions G.1, G.2 and 5.1 hold. If gr denotes the
output of DPUM (see Algorithm 2 in [14]) with early stopping. Then, it holds that

TV (Gr,po) S (Vd + ma) exp(=T) + L*Td"*hpeq
+ L32Td 2Rl2 4+ LY2Te, +e.

corr

In particular, if we set T = ©(log(dm3/€?)), hprea = é(ngl/z) heorr = é(m) and if the score estimation error
satisfies g < O( =), then we can obtain TV error € with a total iteration complexity of O(L2d*? /€) steps.



H. Putting It All Together

Our overall goal is that we want to provide a more concrete calculation for theorems in Section G by assuming the data
distribution is a k£ mixture of Gaussian. Now we provide lemmas that are used in further calculation.

Now we provide the lemma for k-mixtue of Gaussians which states that if py is mixture Gaussians, then all the pdfs in the
diffusion process are also mixtures of Gaussians.

Proposition H.1 (Formal version of Proposition 3.2). Let a,b € R. Let D be a k-mixture of Gaussian distribution, and let p
be its pdf, i.e.,

k
1 -
=2 (2m)d/2 det )12 exp(—5 = ) TS (@ = i)

=1

Let x € R? sample from D. Let z € R% and z ~ N'(0, I), which is independent from x. Then we have a new random variable
y = ax + bz which is also a k-mixture of Gaussian distribution D, whose pdf is

k
1 ~\To—1 ~
5@ =) X7 (2 — 1)),
)= e g R S e )

where [1; = ai;, i = a?%; + b1

Proof. First, we know that the pdf of the sum of two independent random variables is the convolution of their pdf.

From [67] we know that the convolution of 2 Gaussians is another Gaussian, i.e. N (p1,%1) * N (2, X2) = N(pg +
t2, 21 + X2), where # is the convolution operator.

And we know the pdf of a linear transformation of a random variable = € R%, let’s say Az + b where A € R%**? b ¢ R9,
is mp(/l_l(x —b)).

If we consider the transformation az where ¢ € R,z € R, this transformation can be written as alz. Therefore the pdf
of ax is mp((a[)flz) = ﬁp(x/a).

Now we prove the lemma. To find the pdf of az, where x ~ p(z), we can show

k

o 1 2 Tae_1,T
—5(= =) (=
gwﬂde@)mexm G =) E - )

/)] =

% 1 T 21
< (2m) 72 det(a?5;) 12 exp(—g (@ —ap) a™"E; (0 — ap))

N (api, a*%;)

Il
"M;r M= E‘)—'

Il
—

2

where the first step follows from the definition of p(z), the second step follows from a2? det(X;) = det(a%¥;), and the last
step follows from definition of Gaussian distribution.

For a single standard Gaussian random variable z, the pdf of bz will simply be N(0, b2T).

To find the pdf of y = ax + bz, we can show

B(x) = —pla/a) * N(0,121)

Idl

= (Z N (api, a®E;)) * N(0,6%1)

i=1

= Z N (apg, a®%;) * N(0,61))

= Z N (ap;, a®S; + b21)

i=1

kS



where the first step follows from the pdf of the sum of 2 independent random variables is the convolution of their pdf, the
second step follows from the pdf of ﬁ p(z/a), the third step follows from the distributive property of convolution, and the
last step follows from N (ap;, a®%;) * N'(0,b%1) = N (ap;, a®S; + b21).

Thus, the pdf of y can be written as a mixture of £ Gaussians:

k
1 ~\To-—1 ~
——(r— ) X — 1)),
; P d/?det SRR 5 (@ =) T2 (@ = 1))

where /jz = ap;, ii = GQZi + b2I. O
Now we provide the lemma for the second momentum of k-mixtue of Gaussians.

Lemma H.2 (Formal version of Lemma 3.6). If the following conditions hold:
* xo ~ po, where py is defined by Eq. (9).
Then, we have

myi= B [llzoll2] Zaz [lill2 + %))

Proof. From [46], we know the second momentum of data distribution pg(x) is given by:

E[zozg | Zaz (llall3 + %) (23)

Then, we can show

Elllzoll3] = Elzg o]
= Eltr[zoz ]]
= tr[E[zozg ]
k

= > ailpip + i)

=1

k
> aillluill3 + tr[£:])
i=1

where the first step follows from definition of £-norm, the second step follows from tr[aa '] = a " a where a is a vector, the
third step follows from the linearity of the trace operator, the fourth step follows from Eq. (23), and the last step follows from

trlaa '] = ||a||3. O
Now we give the Lipschitz constant explicitly.

Lemma H.3 (Formal version of Lemma 3.5). If the following conditions hold
o Let ||z — atpiil|]2 < R, where R > 1, for each i € [k].

o Let ||z — a¢fiil|2 > B, where 8 € (0,0.1), for each i € [k].

* Let pi(x) be defined as Eq. (10) and p;(x) > -, where v € (0,0.1).

e Let Opip 1= minie[k]{amin(af& +021)}.

e Let Opax 1= maxie[k]{amax(afzi +b21)}.

e Let detmiy := min;epp{det(a7%; + b7I)}.

The Lipschitz constant for the score function

dlose(@)) js iven by:

1 2R? 1 1 B2
L = . . —
run + 20% e et | @myirzae2) O

QUmax

Proof. Using Lemma F.11 and Proposition H.1, we can get the result. O



I. More Calculation for Application

In this section, we will provide a more concrete calculation for Theorem G.5, Theorem G.6, Theorem G.7, Theorem G.8 and
Theorem G.9.

I.1. Concrete calculation of Theorem G.5

Theorem I.1 (DDPM, total variation, formal version of Theorem 5.4). If the following conditions hold:
e Condition 3.4 and Assumption 5.1.

o The step size hy, :== T /N satisfies hy, = O(1/L) and L > 1 for k € [N].

e Let q denote the density of the output of the EulerMaruyama defined by Definition 4.3.

We have
TV(G,p0) S VKL(po N (0, 1)) exp(=T) + (LVdh + Lmah)VT + «VT
convergence of forward process discretization error score estimation error
where , ,
[ — 1 2R 1 1 Cexn(— B
L min(py) + Y20 in(pe) ((2“)(1 detmin(py) + (2m)4/2 det}/? ) eXp( 20 max(pt) )’

min(p¢)

= ma = (Lo aalllf + )2,
* KL(p()(x)||J\/(O, I)) < 5(_ IOg(detmin(Po)) + dUmaX(Po) + Hmax(po) — d)-

Proof. Now we want to find a more concrete L in Assumption G.1. Notice that from Proposition H.1, we know that at any
time between 0 < ¢t < T, p; is also a k-mixture of Gaussian, except that the mean and covariance change with time.

Using Lemma H.3, we can get L.

Now we want to find the second momentum in Assumption G.2. Using Lemma H.2, we know that my =
(i cvi([lpill3 + te[2a))) 2.

In Assumption 5.1, we also assume the same thing.

Now we want to have a more concrete setting for Theorem G.5 by calculating each term directly. Notice that now we have
all the quantities except for the KL divergence term. Thus, we calculate KL(pg||A(0, I)), which means the KL divergence
of data distribution and standard Gaussian.

In our notation, we have

k
KL(po(«)[INV(0, 1)) = KLY aiV (us, ) [N (0, 1))

i=1
k k
2 iz N (pi, 34)
= aN (pi, 2;) log (=2 )d.
1p> X

However, this integral has no close form, but we can find an upper bound for this KL divergence instead.
We know the KL divergence of 2 normal distribution is given by:

KL(N (1, 1) IV (12, 22))

= — Jlog(Goretd) 4 2 al(2) i)+ S — ) (52) o — ) —

det(Eg)

We define oy (po) = Maxie k){Omax (i)} detimin(pe) = min;epr{det(Es)}, fimax(pe) = max;e e {[|1il|3}. From [29],
we can show

k k
KL(Z aiN (pi, 2:)[|INV(0, 1)) < Z%KL(/\/(M, Z)IN(0, 1))
i=1 =1

k

-y %(_ log(det(3;)) + tr[%;] + || sl|3 — d)
=1

1
max 5 (— log(det(%)) + tr[] + i3 = d)

IN



1
S 5(7 log(detmin(po)) + dO—max(po) + /u'max(po) - d)

where the first step follows from the convexity of KL divergence, the second step follows from KL divergence of 2 normal
distribution, the third step follows from Ele a; = land 0 < «; < 1, and the last step follows from the definition of

detmin(p0)7 Omax(po)> Hmax(po)-
Then we have all the quantities in Theorem G.5. After directly applying the theorem, we finish the proof. O

I.2. Concrete calculation for Theorem G.6

Theorem 1.2 (DDPM, KL divergence, formal version of Theorem 5.5). If the following conditions hold:
» Condition 3.4 and Assumption 5.1.
* We use uniform discretization points.
We have
 Let q denote the density of the output of the Exponentiallntegrator defined by Definition 4.4, we have

dT?L?

KL(po||q) < (Mz + d)e™ " + Tej + N

In particular, choosing T = ©(log(Mad/eg)) and N = O(dT?L?/eZ), then we can show that

KL(po[|) = O(e})

e Let q denote the density of the output of the EulerMaruyama defined by Definition 4.3, we have

dT?L?  T3M,

KL(pollg) S (Ma +d)e™T +Teh + S + =
where .
* L= Umiim) + vzaszj(pt) ’ ((27r)d deltmm(pt) + (2m)d/2 dletrln/ii(pt)) -eXp(—%m{iix(pt)),
o« My =300 (llall3 + e[,
Proof. Using Lemma H.3, we can get L. Using Lemma H.2, we can get mo. Then we directly apply Theorem G.6. [

I.3. Concrete calculation for Theorem G.7

Theorem 1.3 (DDPM, KL divergence for smooth data distribution, formal version of Theorem 5.6). If the following condi-
tions hold:
* Condition 3.4 and Assumption 5.1.
» We use the exponentially decreasing (then constant) step size hy, = ¢ min{max{ty, %}, 1}, c= T+11\<;g L < 1%1'
* Let q denote the density of the output of the Exponentiallntegrator defined by Definition 4.4.

We have

. d*(T +log L)?
KL(pol[d) S (Mo + d)exp(~T) + 73 + T F1BLS
where ) 2
3 — 1 2R . 1 1 . _ﬂi
L Omin(pg) + 72(Umin(po))2 ((27")(1 dEtmin(Po) + (27r)d/2(d’3tmin(p0))l/2 ) exp( 2‘7max(p0) ),

k
o My =370 oq(llpall3 + tr[3]).
Furthermore, if we choosing T = ©(log(Mad/ey)) and N = O(d*(T + log L)?/€3), then we can show

KL(po||) < O(ep)

In addition, for Euler-Maruyama scheme defined in Definition 4.3, the same bounds hold with an additional M Zgzl hi
term.

Proof. Clearly, pg is second-order differentiable. Using Lemma H.3, we can get L. Using Lemma H.2, we can get mo. Then
we directly apply Theorem G.7. O



I.4. Concrete calculation for Theorem G.8

Theorem 1.4 (DPOM, formal version of Theorem 5.7). If the following conditions hold:
e Condition 3.4 and Assumption 5. 1.
e We use the DPOM algorithm defined in Definition 4.5, and let q be the output density of it.

We have
TV(G,po) < (Vd+ma) exp(=T) + L*Td* *hyrea + L*/*Td*2hL2 + LY *Tey + €.
where , )
o T — 1 2R . 1 1 . __ B
L Tmin(py) + Y20 intpe) ((QW)d detmin(py) + (2m)4/2 det}/? ) - exp( 20 max(py) )

min(py)
k
o« my = (35 (|3 + tr[Za) 2 _ _
In particular; if we set T = O(log(dmaz/€)), hprea = O(3z572)s heorr = O(35;), and if the score estimation error
satisfies g < 5(%) then we can obtain TV error € with a total iteration complexity of ©(L3d/€?) steps.

Proof. Using Lemma H.3, we can get L. Using Lemma H.2, we can get ms. Then we directly apply Theorem G.8. O

I.5. Concrete calculation for Theorem G.9

Theorem L.5 (DPUM, formal version of Theorem 5.8). If the following conditions hold:
* Condition 3.4 and Assumption 5.1.
e We use the DPUM algorithm defined in Definition 4.6, and let q be the output density of it.

We have
TV(G,po) S (Vd+ma) exp(=T) + L*Td* ?hyreq + L*/>Td*/2hl2 + LY ?Tey + €.
where )
* L= om;im) szrzf:(m (@me deltn,m@,,) + (zﬂ)d/ZJeth{ii(pt)) 'eXp(_%m{iix(m)’

k
o = (S aullall3 + )2 i i
In particular, if we set T = O(log(dma/€)), hpred = O (32175 )> Peorr = O(gs7mg172 ), and if the score estimation error
satisfies €g < 6(%) then we can obtain TV error € with a total iteration complexity of ©(L2dY/? /¢) steps.

Proof. Using Lemma H.3, we can get L. Using Lemma H.2, we can get mo. Then we directly apply Theorem G.9. O



