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1. Implementation Details
We use the open-sourced Steam Audio library [9] to effec-
tively model the sound occlusion and reflection caused by
scene geometry. Compared with the commonly used Py-
roomacoustics library [1, 7], Steam Audio can model more
complex 3D room geometry, such as a house with multiple
rooms, allowing for the simulation of more realistic spatial
audio for our problem.

We implement our audio refinement model with the Py-
Torch framework [6]. We use a total of 30 multi-scale
gated convolution blocks and gradually increase the dila-
tion size from 20 to 29. We use the Adam optimizer [3]
with β1 = 0.9, β2 = 0.999, and a weight decay of 1e−4.
We set the learning rate to 5e−4 and train each model for
200 epochs with a batch size of 4. We set the noise scale σ
to 1e−4. By default, we use the Euler solver with 4 iteration
steps during inference.

2. Generalization Evaluation Setup
To examine the generalization limitation of existing ap-
proaches, we adapt the real-world audio-visual RWAVS
dataset [4] to satisfy our requirement. The RWAVS dataset
contains multiple videos within the same environment while
varying the sound source locations. A common practice is
to train and evaluate models on individual videos. Here,
we design a new evaluation setup: for each environment,
we select one video as training data, with the remaining
videos used for evaluation. This setup allows us to effec-
tively assess how well existing methods generalize to new
sound source locations within the same environment. We
show one example environment (apartment) in Fig. 1. In
this environment, we display the location of sound sources
in each video, as well as the training and evaluation poses.
Since the sound source locations vary across videos, this
experimental setup effectively measures the generalization
ability of different approaches.

3. Audio Refinement With Flow Matching
In our second stage, we design a flow matching model [5, 8]
for audio refinement. We present the pseudo-code for model
training in Algorithm 1. Given a source audio xtx, simu-
lated audio xsim, and recorded audio (ground-truth audio)
xrx, we randomly sample an intermediate audio ψt(x) and
train the neural network with the flow matching loss.

Here, we also provide the pseudo-code for model infer-
ence. We include both the Euler solver (see Algorithm 2)
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Figure 1. Generalization evaluation setup. In each environment,
we select one video for training (red poses) and use the remaining
videos for evaluation (green poses). We also show the location of
sound sources (speakers).

Algorithm 1 Flow Matching Model Training

Require: Source audio xtx, simulated audio xsim, recorded
audio xrx, pose p, noise scale σ, initial network ut(θ)
while not converge do

ϵ ∼ N (0, I)
t ∼ U(0, 1)
ψt(x)← txrx + (1− t)xsim + σϵ

LFM(θ)← ∥ut(ψt(x), xtx, p; θ)− (xrx − xsim)∥2
θ ← Update(θ,∇θLFM(θ))

end while
return θ

and the Midpoint solver (see Algorithm 3). Given a trained
network ut(θ), a simulated sound xsim, and the number of
inference steps n, these solvers iteratively estimate the so-
lution of the Ordinary Differential Equation (ODE):

d

dt
ψt(x) = ut(ψt(x), xtx, p; θ),

ψ0(x) = xsim.
(1)

The solution ψ1(x) is the estimated binaural audio. Readers
may refer to the [2] for the definition of Heun solver used
in our experiment.

4. Ablation Studies On Numeric Solver and In-
ference Step

As discussed earlier, the audio refinement process requires
setting the number of iterations and selecting a numerical
solver. Here, we evaluate how different flow steps and nu-
merical solvers influence audio quality in a complex apart-
ment environment with challenging acoustics. We com-
pare three solvers—Euler (first-order), Heun [2], and Mid-



Algorithm 2 Euler Solver for Audio Refinement

Require: Trained network ut(θ), simulated sound xsim, in-
ference steps n
t← 0
ψt(x)← xsim
δ ← 1/n
while t < 1 do

v ← ut(ψt(x), xtx, p; θ)
ψt(x)← ψt(x) + vδ
t← t+ δ

end while
ψ1(x)← ψt(x)
return ψ1(x)

Algorithm 3 Midpoint Solver for Audio Refinement

Require: Trained network ut(θ), simulated sound xsim, in-
ference steps n
t← 0
ψt(x)← xsim
δ ← 2/n
while t < 1 do

v′ ← ut(ψt(x), xtx, p; θ)
ψt(x)

′ ← ψt(x) + v′δ
v′′ ← ut(ψt(x)

′, xtx, p; θ)
v = (v′ + v′′)/2
ψt(x)← ψt(x) + vδ
t← t+ δ

end while
ψ1(x)← ψt(x)
return ψ1(x)

point (both second-order)—for different function evalua-
tions (NFE) ranging from 1 to 10. Results are presented in
Fig. 2. Although the Heun solver at NFE=4 yields the low-
est error, it is highly sensitive to variations in NFE. In con-
trast, the Euler solver demonstrates strong robustness, with
steady performance improvements as NFE increases from 1
to 6, after which its performance stabilizes. The Midpoint
solver achieves its best performance at NFE=2, but its per-
formance declines noticeably as NFE increases. Based on
these results, we select the Euler solver with NFE=4 as our
default inference strategy to strike a balance between effi-
ciency, robustness, and quality.
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Figure 2. Visualization of the influence of flow steps and numeri-
cal solvers on audio generation quality.
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