Appendix
A. Building the Ontology

Al. Semantic Keyword Vectors For any given input im-
age x, we have a keyword vector ¥(x) = [v1, va,...] (the
value v; is corresponding to the i*" keyword) obtained by
pre-trained scene understanding models. In this work, we
use £ = 150 4 365 = 515 keywords (excluding foreground
objects). We define the keyword vector in the following for-
mat:

* Useg — U1 tO vi50: Object predictions, e.g., wall, floor,
etc. These 150 object predictions are provided by a pre-
trained segmentation model on the ADE20k dataset.

* Usecene — U151 tO U525: scene class predictions, e.g., pond,
grassland, etc. These 365 scene class predictions are pro-
vided by a pre-trained model on Place365 dataset.

We define the k" keyword as present if v, > 1% when
the k" keyword is a segmentation keyword, or if v, =
max(scene ) When the k*" keyword is a scene classification
keyword. In Figure 9, we show that on average, one input
image has three frequent items. However, this is not enough
for background invariance testing, therefore, we build an
ontology to expand the keywords.
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Figure 9. Number (maximum, mean, minimum) of enriched / ex-
panded items after each ontology level.

A2. Databases For scene understanding: we use pre-
trained models on two databases. In the ADE20k dataset
[44], 150 object classes in 20,000 background scenes from
the SUN and Places database are annotated. Some labelled
objects can be a whole object or a part of another object,
e.g., a door can be an indoor picture or a part of a car.
Place365 dataset consists of 1,803,460 training images with
365 different scene classes [43]. And the number of im-
ages per class varies from 3,068 to 5,000. For preparing
models to be tested: we use a smaller version of ImageNet,
namely IN9 which consists of images from ImageNet but
labelled with nine classes [40]. There are 45,405 images on
the training set (5045 images per class) and 4185 images
on the testing set (465 images per class). They also pro-
vide segmented foreground masks for some images on the

testing set. Finally, For background candidates: we use
BG20k which consists of 20,000 background scenes with
no foreground images [21].

A3. Association Analysis and Ontology: We use associ-
ation analysis to build an ontology to help background en-
richment in this work. Ontology is a graph based approach
to store relationships between different entities, e.g., key-
words in our case. Commonly used relationships in an on-
tology include “« is related to 3 or “a has 3”. In this work,
the relationship in our ontology is defined: “Keyword A is
related to keyword B in a manner that if A is known to be
in an image, B has the conditional probability of pr(B|A)
to occur in the same image. This probability is computed as
the confidence in association analysis (Eq. 2).

Ad. Pre-steps of Building the Ontology

* Run a pre-trained scene understanding model on each of
the given input images and generate a keyword vector for
the image.

* Run association analysis to obtain frequent items, item-
sets, association rules, and the ontology using the Apriori
or FP-Growth algorithm [16].

* The ontology is re-built only when necessary, e.g., when
new keywords are added into the ontology, or when the
distribution of the dataset has changed.

AS5. Keyword Expansion The major steps are:

1. For an input image, obtain a keywords vector V} using
the scene understanding model. Each keyword is marked
with [0] indicating level 0. Initialize the overall key-
words vector V as V < Vg, and i < 0

2. If the overall keywords vector V' has reached the mini-
mal number of keywords desired, i.e., ||V|| > MINKWS
or the number of iterations reached the maximum num-
ber allowed, i.e., ¢ > MAXITS, stop the process and
return the overall keywords vector V. Otherwise go to
the next step.

3. We use the ontology to find all keywords that connected
to the keywords in the vector V;. For any newly-found
keyword that is not already in V/, add it to V11, and
mark it as [ + 1], where ¢ + 1 indicates the new extended
level.

4. V < union(Vo, V1,...,Viy1), i i+ 1.

We use the keyword expansion algorithm to enrich the
originally detected keywords V|, (from the pre-trained scene
understanding model). In Figure 9, we show that using the
ontology with more iterations can increase the number of
total keywords in V. However, due to the limited size of the
ontology (the limited size of the database we use to build
the ontology), the effect of using the ontology becomes less
significant after the 4th iteration, which is consistent with
the experiments in Section 5.



Table 3. Experiment results: the automation accuracy using random forest as the assessor is around 80% and the inter-rater reliability score
with majority votes is around 0.65. Meanwhile, no significant differences are found using different settings (i.e., kernel size, sigma value)

for RBF interpolation.
Interpolator Automation Accuracy Inter-rater Reliability with Majority Votes
Assessor Size: 32, 0=2 | Size: 16, 0=5 | Size: 32, 0=10 | Size: 32, 0=2 | Size: 16, 0=5 | Size: 32, 0=10
Random Forest 79.6£8.1% 78.7£7.7% 79.7£7.5% 0.651+0.103 | 0.635+0.116 | 0.64940.091
Adaboost 54.5£7.5% 70.9£10.2% 74.8+9.1% 0.3584+0.134 | 0.548+0.159 | 0.599+0.102
Worst-case accuracy 64.4% 0.387

B. Ablation Study

B1. Number of Selected Testing Images When use the
two sampling approaches (see Section 4.2.1) to search test-
ing scenes, we obtain N = 32 testing images via 32 inter-
vals (bins) or 32 keywords. Here we show that we obtain
similar results when N = 50 or N = 100.

As shown in Table 4, selecting different number of test-
ing images leads to similar neuron coverage rates and IRR
scores. This is aligned with [31] where fuzzing techniques
(e.g., mutation) are used to find adversarial examples to
achieve a better coverage rate. Therefore in this work, we
choose N = 32.

Table 4. Selecting different number of testing images leads to sim-
ilar Recall, precision and F1 score

N=32 | N=50 | N=100
Neuron Coverage (Recall) 0.652 | 0.657 | 0.660
Fleiss’ Reliability (IRR, Precision) | 0.649 | 0.645 | 0.645
Fl1 0.650 | 0.651 | 0.652

B2. Different Settings for RBF Interpolation We con-
duct the ablation study for some parameters of the interpo-
lation, i.e., the kernel size and sigma values. In Figure 13,
the three interpolants are (kernel size: 16, sigma: 5, K: 32),
(kernel size: 32, sigma: 2, K: 32) and (kernel size: 32,
sigma: 10, K: 32) respectively. The K values only affect
a few points at the corners and we barely see any differ-
ence. As shown in Figure 10, kernel size and sigma value
affect how blurry the interpolated scatter plots are. Based on
the quality of the interpolated scatter plots, we tested these
three interpolants and reported the automation results in ta-
ble 3 where we show that using different parameters for the
interpolation did not heavily affect the automation accuracy
(the performance of assessors).

B3. Number of Testing Images To generate the scatter
plots for a given model, we use the testing set of IN9 dataset
[40]. However, among all the 4185 images in the testing
set, only 1712 images are provided with a foreground mask.
Therefore, we use the 1712 images to generate the scat-
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Figure 10. Different interpolant parameters for Mg1. We use (Ker-
nel size 16, sigma 5), (Kernel size 32, sigma 2), and (Kernel size
32, sigma 10) respectively in Figure 13.

ter plots. In Figure 13, we show that using different per-
centages of the 1712 images will not significantly affect the
qualities of the generated scatter plots (neither the original
nor interpolated). However, when the number of images
becomes too low, e.g., <25% (less than 430 images), the
generated scatter plots are starting to be heavily affected.

B4. Testing Patterns Across Different Testing Runs  Fi-
nally, we show that our proposed testing method leads to
consistent visualized patterns across different runs (in Fig-
ure 12), especially when compared with random sampling
(Figure 2). This is also reflected by the relatively higher
reliability across annotators.

BS. Distribution of the distances d; ; As shown in Fig-
ure |1, the distances are Gaussian distributed. As expected,
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Figure 11. Distribution of distances between original images and
synthesized testing images. Left (blue): Association Ontology,
middle (green): nearest neighbors, right (red): random.

7 (a) Test run1 (c) Test run 3
Figure 12. Our proposed methods lead to consistent visualized
testing patterns across multiple different testing runs, compared
with random sampling (Figure 2)

compared with nearest neighbor, the distribution (of as-
sociation ontology) suggests that our sampled scenes are
more diverse. Compared with random sampling, the dis-
tribution shows that the sampled scenes prioritize scenes
with a stronger association with the original images. Any
methods involving selecting N items from K (> N) has
a long-tail by definition. Only when the sorting of N is
not good, it becomes a problem. In this work, we sample
testing scenes based on semantically connected keywords.
In our approach, the “semantic connections” depend on the
frequency of association.

C. Automated Background Invariance Testing

We build a small model repository of 250 models for ob-
ject classification. The models were trained under different
settings:
¢ Architectures: VGG13bn, VGG13, VGG11bn, VGGI11
[37], ResNet18 [17], and Vision Transformer [10]
» Hyper-parameters: learning rate, batch size, epochs
* Augmentation: rotation, brightness, scaling, using im-
ages with only foreground (black pixels as background)
e Optimizers: SGD, Adam, RMSprop
* Loss: cross-entropy loss, triplet loss, adversarial loss
We apply these models to the synthesized testing images.
With the two measuring positions per model, we generate
four variance matrices using the results from the ML Test-
ing process as mentioned in Section 5. In this section, we
discuss our professional annotations based on the variance
matrices, statistics of our model repository, and finally anal-
ysis on the automation process of the invariance testing pro-
cedure.
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Figure 13. We use different numbers (percentages) of the testing
images to generate scatter plots. The number of images will not
significantly affect the quality of the generated plots unless the
number becomes too small, e.g., < 25%. The example we show
here is model Mg

C1. Professional Annotations We survey the three pro-
fessionals who provide the annotations for background in-
variance testing. We ask them the following questions:

* Q1: Which locations are you interested in?

Q2: Are the interpolated scatter plots helpful? Which
interpolant is the most helpful?

* Q3: Are there any common visual patterns?

Q4: Are the annotations aligned with the worst-case ac-
curacy?

Q5: Would you say your decisions are consistent? Are
you confident about your decisions?

* Q6: Any interesting findings about the models?

Q1: Testing locations All the three coders agree that the
final predictions and outputs from the last layer before the
final fully connected are important to be tested.

Q2: Helpful interpolated Coder 1 and 2 mention all of
the interpolated plots are helpful and there is no particular
interpolator that is superior to the others. Coder 3 mentions
they check all of the interpolated plots and find the one with
kernel size 32 and o = 10 helps their judgements the most
because it shows the most straightforward global shape of
the plots.

Q3: Common visual patterns Coder 1 and 3 mention
that the most common patterns are those with a green area
(which indicates a lower error rate) at the bottom left, and
some yellowish patterns (which indicates a higher error
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Figure 14. Examples of original scatter plots and interpolated /
accumulated scatter plots. From (a) to (e) are model M;, My,
M6, Mes, M71 respectively.

rate) at either the edges or corners at the top right. Coder 2
notices it is common that there is a green line along the pri-
mary diagonals (from bottom left to top right) of the plots.
We show more different patterns in Figure 14.

Q4: Annotations versus worst-case accuracy All three
coders mention their annotations are not completely aligned
with worst-case accuracy. However, they all find their an-
notations and the traditional metric are related to each other
to some extent.

QS5: Consistent annotations All three coders are confi-
dent about their decisions for the majority of the models.
However, they are less confident for those labelled as “bor-
derline”.

Q6: Interesting findings Coder 1: vision transformers
seem to be naturally more robust against background per-
mutations. Even when the final predictions do not appear
to be robust at all, their last layer before the head module
can still be robust (dark green). Coder 2: models trained us-
ing images without background (black pixels as their back-
ground) appear to be more robust than those trained with
natural images. Coder 3: metric learning, e.g., triplet loss,
does not seem to be helpful even for the convolutional lay-
ers that are used to form the triplet loss function.
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Figure 15. Original scatter plots (first column) and interpolated
variance matrices (second to fourth column). The scatter plots are
generated using the ontology level one to five, i.e., OL[1], OL[2],
..., OLI5] for a randomly selected model Mgi. Interpolant 1 -
3: (kernel size 16 0=5), (kernel size 32 0=2), and (kernel size 32
o=10).
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Figure 16. Statistics of model architectures in our model reposi-
tory. Left: number of models with each architecture in our model
repository. Right: percentage of invariant / borderline / variant
models for each architecture in our model repository.
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Figure 17. Three sets of example background scenes discovered
for a target image of fish (the top-left of each set). The random set
includes mostly unsuitable images. The closest set includes those
discovered using only the original keywords K, = {painting, wa-
ter, tree}. The expanded set includes those discovered using the
ontology, showing more suitable background scenes. Note that
those keywords found in background scenes should not include
any of the foreground objects that the original ML models were
trained to classify as specified at the beginning of Section 4.

C2. Model Repository In this section, we show some
statistics of our model repository (250 models). As men-



tioned in the main paper, we trained the models under dif-
ferent settings, and provide professional annotations for
each of them as being background-invariant, borderline or
background-variant.

Table 5. Statistics of the annotations of the model repository

Variant Total
118 (47.2%) | 250 (100%)

Borderline
70 (28.0%)

Invariant
62 (24.8%)

As shown in Table 5, the model repository is not bal-
anced. There are more background variant models than
background invariant models, which is expected as most of
the models were trained using no special technique to boost
their background invariance qualities; Unlike other types of
transformations, e.g., rotation, background augmentation is
not commonly used.

Table 6. Statistics of the accuracy of the model repository

mean max min std
Accuracy | 91.88% | 99.42% | 43.40% | 9.11%
Worst-case | 28.76% | 65.36% | 0.18% | 11.92%

In Table 6 we show that the average accuracy of the mod-
els in the collection is around 91.9%. We did not intention-
ally make any model not sufficiently trained. However, for
some models that have not been pre-trained on ImageNet,
the accuracy can drop to lower than 50%.

In Figure 16, we show that in our model repository, we
have a wide range of different architectures, namely vision
transformer patch16-224, resnet 18, and vgg variants. We
also show the statistics for their background variance qual-
ities. However, the size of our model collection is limited
and we leave the studies of the architectures’ impact on in-
variance qualities to future work.

C3. Analysis on Automated Assessor Shapley values
(a game theoretic approach) [26] are commonly used to
explain outputs or predictions of machine learning mod-
els. It isolates each input feature and averages its expected
marginal contribution. In this section, we report the usage
of Shapley values to explain the predictions of the random
forest (assessor) we train for prediction background invari-
ance qualities of ML models.

As shown in Figure 19, for an arbitrarily selected model
Ms, the assessor’s prediction is “background invariant”.
And the top factor contributing to the predictions is the
mean value of the variance matrix generated at posg (final
prediction). We also show that, in general, the assessor will
consider the mean value of the variance matrix and the er-
ror rate (defined as the percentage of the pixels > thres
[25]). This way, we can have a testing report for the asses-

sor for both the overview analysis and case studies for any
interested model(s).

D. Variance Matrices from RBF-based Resam-
pling.

Whilst scatter point clouds are able to display our testing
results, they suffer from the problem of overlapping glyphs
when the number of points per unit area becomes exces-
sively large [27]. Therefore, analysis and judgement based
purely on scatter plots might not be consistent.

To address the problem of overlapping glyphs of scatter
point clouds, we use the common approach of radial ba-
sis functions (RBFs) to transform a set of point clouds into
a variance matrix. For each element e in a variance ma-
trix, an RBF defines a circular area in 2D, facilitating the
identification of all data points in the circle. Let these data
points be p1, pa, ..., p. and their corresponding values are
v1, V2, ..., 0.. As discussed earlier, the coordinates of each
data point are determined by the semantic distances from
the target image to two testing images. A Gaussian kernel
¢ is then applied to these data points, and produces an in-
terpolated value for element e as

Y1 (¢(lle = pill) - ve)
Yz o(lle = pill)

However, when the RBF has a large radius, the computation
can be costly. When the radius is small, there can be cases
of no point in a circle. In order to apply the same radius
consistently, we define a new data point at each element e
and use K nearest neighbors algorithm to obtain its value
u(e). The above interpolation function thus becomes:

$(0) - u(e) + 375 (@(lle — pill) - vi)
¢(0) + 3oizy ¢(lle — pill)

In Figure 15, we show the application of three different
RBFs. The mixed green and yellow patterns in row OL[1]
gradually become more coherent towards OL[5]. We can
clearly see a green square at the centre and yellow areas
towards the top and right edges.

value(e) =

value(e) =

E. Plausibility for Invariance Testing and Fu-
ture Works

Consider two sets of testing images: X and Y with plau-
sible and implausible background respectively. Model A
performs 100% correct with X, and 100% incorrect with
Y; Model B performs 100% incorrect with X, and 100%
correct with Y. We should always prefer model A than B.
For example, a case where a model fails to recognize a car
just because it appears in front of a different building is a
more serious issue than a case where it fails when the car
appears in a bathroom. Therefore in this paper, we focus
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Figure 18. (a), (b) are target images. (c), (d) are background candidates. (a) and (c) have only a few detected keywords.
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Figure 19. Shapley values of a randomly selected assessor (a random forest). Left: given a model Ms, and its variance matrices generated
at (a) the final prediction (poso) and (b) the final convolutional layer (pos1), the assessor predicts the model to be “background invariant”.
And the top reasons for this prediction is: the mean value of the variance matrix (poso) and the error rate (defined in [25]) of the variance
matrix (posp). Note that there are yellowish areas on the corners of the variance matrices at posi, therefore the continuity score and
the gradient scores at these two positions have a negative impact on the decision. Right: In general, the assessor’s decisions for being
“background-invariant” depend on the mean value of the variance matrix (poso) and the error rate of the variance matrix (poso), which is

aligned with the analysis of M5 on the left.

on invariance testing which takes plausibility into consider-
ation. Figure 17 shows three sets of example background
scenes discovered for a targeting image (i.e., the fish image
on the top-left corner of each set). While it is not necessary
for every testing image in invariance testing to be realis-
tic, the plausibility of a testing image reflects its probability
of being captured in the real world. It is unavoidable that
invariance testing involves testing images of different plau-
sibility, and therefore it is important to convey and evaluate
the testing results with the information of the plausibility
[29, 33]. An ideal set of background scenes should have
a balanced distribution of scenes of different plausibility.
Qualitatively, we can observe that in Figure 17, the random
set has too many highly implausible images and the closest
set has images biased towards keywords K, = {painting,
water, tree}, many are not quite plausible, while the ex-
panded set has a better balance between more plausible to
less plausible background scenes. When generating / syn-
thesizing testing images, we adopted the simple background
replacement in this work due to the reason stated in Section
4.2.2. In the future, this can be replaced by generative mod-
els when they become more reliable or when more advanced
and accountable filtering techniques are available. Finally,
in this work, for each target image, we select NV items from
K (> N) keywords based on semantic connections. In our

approach, semantic connections depend on the frequency
of association. In future work, more advanced techniques
can be explored to improve the association analysis, e.g., a
human-in-the-loop association mining technique.



