LangBridge: Interpreting Image as a Combination of Language Embeddings

Supplementary Material

Overview

In this supplementary material, we present more dataset de-
tails and more experimental results that are not included in
the main paper. The contents include:

* A comprehensive introduction to evaluation bench-
marks S-A.

 Detailed training configurations and hyperparameters S-
B.

* Additional experimental results on a broader range
of benchmarks for LLaVA-Next integrated with Lang-
Bridge. S-C

¢ Discussion of Computational Cost. S-D

* Discussion of current limitations and future directions S-
E.

S-A. Evaluation Benchmarks

We evaluated our method on seven widely-used bench-
marks, covering a diverse range of vision-language under-
standing tasks.

* GQA [1]: Evaluates the model’s visual perception ability

through open-ended questions.

TextVQA [6]: Tests the model’s ability to read and rea-

son about text in images to answer questions, focusing on

text-based visual reasoning.

ScienceQA [5]: Provides a set of multiple-choice science

questions with images to test the model’s zero-shot gen-

eralization ability in scientific question answering.

* MME [7]: A comprehensive evaluation of LVLMs across

ten perception tasks (e.g., OCR and object recognition)

and four cognitive tasks (e.g., commonsense reasoning,
numerical computation, translation, and code reasoning).

MMBench [4]: A bilingual benchmark for evaluating

LVLM’s multimodal understanding capabilities, consist-

ing of approximately 3000 multiple-choice questions cov-

ering 20 ability dimensions. The Chinese version is called

MMBench-CN.

MMVeT [8]: A challenging multimodal benchmark de-

signed to evaluate vision-language models’ robustness

and reliability. It focuses on testing fine-grained visual
understanding, complex reasoning, and real-world appli-
cation scenarios.

* POPE [2]: Evaluates the model’s ability to identify spe-
cific objects in images, aiming to detect object-level hal-
lucinations. It uses "yes/no" questions based on object
annotations, with 50% of queries targeting existing ob-
jects and 50% targeting non-existing objects, employing
random, popular, and adversarial sampling strategies.

Through these comprehensive benchmarks, we system-
atically evaluated the model’s capabilities across diverse
tasks, with particular emphasis on multimodal understand-
ing, visual reasoning, hallucination detection, and real-
world applicability. These benchmarks collectively provide
a thorough assessment of the model’s strengths and poten-
tial areas for improvement.

S-B. Training Details

As shown in Table S-1, we follow the same training recipes
as LLaVA’s settings [3] for standard MLPs, except that we
change the pretrain learning rate from le-3 to 2e-5 for Lang-
Bridge.

Table S-1. Training hyper-parameters

Hyper-parameter ‘ Value

batch size 256 (pretrain), 128 (finetune)
learning rate le-3 (pretrain), 2e-5 (finetune)
learning rate schedule cosine

learning rate warm-up ratio 0.03

weight decay 0

epoch 1

optimizer AdamW

bfloat16
zero2 (pretrain), zero3 (finetune)

float precision
deepspeed configuration

S-C. More experiments results

To further evaluate the generalizability and robustness of
our method, we integrate it into LLaVA-Next. Our model
first uses a Qwen2-0.5B pretrained LangBridge module,
which is then combined with Qwen2-7B for further su-
pervised fine-tuning (SFT). We compare it to a standard
MLP baseline with same backbone and evaluate across a
range of benchmarks. As shown in Table S-2, our model
achieves consistent improvements over the baseline in fine-
grained image analysis tasks, including AI2D, ChartQA,
and DocVQA, while maintaining parity on MMVP. For
grounding and real-world reasoning tasks (Table S-3), our
approach significantly outperforms the baseline on Ref-
COCO (+17.06%) and RefCOCO+ (+15.23%), and per-
forms comparably on RefCOCOg and MMRealWorld. In
the video understanding domain (Table S-4), the model
improves results on Seed-Video and Seed2-Video while
maintaining similar performance on VideoMME and MMT.
Lastly, as shown in Table S-5, our method improves accu-



racy on TextVQA, GQA, and MME, demonstrating its ef-
fectiveness on widely used benchmarks, with only a slight
drop on MMMU. These results collectively demonstrate
that LangBridge consistently matches or outperforms stan-
dard MLPs across a wide range of tasks, showcasing strong
generalization capability.

Table S-2. Results on Fine-grained Benchmarks

Method | AI2D ChartQA DocVQA MMVP
Baseline 0.763 0.8632 0.741 433
Our Model 0.766 00309 0.877 o1.60%) 0.758 10220 43.3 100.00%)

Table S-3. Results on Grounding and Real-World Benchmarks

Method ‘ RefCOCO  RefCOCO+ RefCOCOg MMRealWorld

Baseline ‘ 0.387 0.348 0.6377 0.4405

Our Model  0.453 qiroswr 0.401 1523y 0.622 w53 0.4436 00704
Table S-4. Results on Video Benchmarks

Method | VideoMME = Seed-Video ~ Seed2-Video MMT

Baseline 50.77 0.444 0.494 54.43

Our Model 50.71 woss 0.450 (0135% 0.504 (10203%) 53.98 @.17%)

Table S-5. Results on Commonly Used Datasets

Method | TextVQA  GQA MME MMMU
Baseline 0.654 0.651 1886 0.4356
Our Model | 0.665 woissr  0.652 wooisy 1928 1ooawy  0.4178 wsors)

S-D. Computational Cost

We follow LLaVA-Next settings and conduct experiments
on H100 using its SFT data. As shown in the table below,
LangBridge incurs only a 10% increase in training time
compared to the baseline, while significantly reducing pre-
training time.

Vision Backbone LLM MLP

CLIP-L/336  Qwen2-7B-Instruct ~ Normal 3.876 24.8 7.3B
CLIP-L/336  Qwen2-7B-Instruct Langbridge 4.273 (1.1x) 27.3 7.43B

Speed (s/iter) Time (h) Parameters Data Hardware
LLaVA1.6 SFT  8x H100
LLaVAL.6 SFT 8x HI100

S-E. Limitations

While our work demonstrates promising results in vision-
language tasks, it has a notable limitation: we only focus
on the visual modality. Modern multimodal systems often
need to process various types of inputs beyond images, such
as videos, audio, and 3D data. Future work could explore
extending LangBridge to support these additional modali-
ties, potentially enabling a more comprehensive multimodal
understanding system.
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