
Neural Architecture Search Driven by Locally Guided Diffusion
for Personalized Federated Learning

(Supplementary Material)

Peng Liao1∗, Xilu Wang3∗, Yaochu Jin2,1†, Wenli Du1, Han Hu1

1 Key Laboratory of Smart Manufacturing in Energy Chemical Process,
Ministry of Education, ECUST, Shanghai, China

2 Trustworthy and General AI Lab, School of Engineering,
Westlake University, Hangzhou, China

3 Computer Science, University of Surrey, Surrey, UK
pengliao@mail.ecust.edu.cn, wangxilu@surrey.ac.uk, jinyaochu@westlake.edu.cn,

wldu@ecust.edu.cn, han.hu@mail.ecust.edu.cn

The Personalized Federated Stochastic Differential
Equation-Based NAS (PerFedSDE-NAS) framework con-
sists of two stages: (1) Pretraining a conditional diffusion-
based architecture generation model and (2) personalized
federated search using the diffusion-based candidate ar-
chitecture generation strategy. We validate the proposed
PerFedSDE-NAS across three search spaces, with their de-
tailed introduction provided in Sec. A.

The pretraining of the conditional diffusion model is dis-
cussed in the main paper of Sec. 3.2. Additional details
include the diffusion process (Sec. B), training of the score
network (Sec. C), and the mapping of architectural and data
features to accuracy predictions (Sec. D).

The personalized federated search based on the
diffusion-generated candidate architectures is also elabo-
rated in the main paper of Sec. 3, with supplementary pseu-
docode provided in Sec. E.

The visualization of non-i.i.d. data distribution is pre-
sented in Sec. F, and the extended ablation study is in
Sec. G.

Finally, we conduct a quantitative analysis of GPU days
consumption between client-side and server-side NAS-
based personalized federated learning (PFL) approaches,
revealing the inherent reasons why client-side NAS-
based PFL is theoretically more computationally expensive
(Sec. H). Notably, although the inference time for archi-
tecture diffusion is higher than that of crossover and mu-
tation operators, it does not increase the overall computa-
tional cost, as shown in Table D. This is because architec-
ture diffusion is parallelized with supernet training, and the

* Equal contribution. † Corresponding author.

time required to generate 100 architectures via diffusion is
shorter than that needed for a single epoch of the supernet
training. All experiments used one A100 GPU.

A. Search space
A.1. DARTS
DARTS [8] is one of the most widely used search spaces
in NAS. The searched network consists of stacked Normal
Cells, which maintain the same feature map size between
input and output, and Reduction Cells, which reduce the
feature map size by half. Each cell comprises two input
nodes, one output node, and four intermediate nodes. The
edges represent different operations, including 3 × 3 and
5×5 separable convolutions, 3×3 and 5×5 dilated convo-
lutions, 3× 3 max pooling, 3× 3 average pooling, identity
mapping, and zero operation.

A.2. MobileNetV3
MobileNetV3 [2] is one of the largest search spaces in
NAS, covering approximately 1019 possible architectures.
The search space is designed hierarchically, consisting of
five stages, where the number of building blocks per stage
varies between 2 and 4. Consequently, the maximum pos-
sible depth of a MobileNetV3 architecture is calculated as
5× 4 = 20. For each building block, the kernel size can be
selected from the set {3, 5, 7}, and the expansion ratio can
be chosen from {3, 4, 6}. This results in a total of 3×3 = 9
possible operation types per layer.

A.3. NASViT
NASViT [4] defines a hybrid search space that integrates
both convolutional and transformer-based components. The

1



Table A. A summary of hyper-parameter settings for training score
networks.

Parameters Settings
Batch size for training 256

Dropout rate 0.1
Initial learning rate 2.00E-05

Optimizer Adam
β1 in Adam optimizer 0.9
β2 in Adam optimizer 0.999

Warmup period 1000
Gradient clipping 1.0

architecture is constructed sequentially with a convolutional
block, three MBConv blocks, four transformer blocks, and
an MBPool block. Each block allows for specific architec-
tural choices, such as width, depth, kernel size, and expan-
sion ratio. Since the search space definitions vary across
different blocks, we refer readers to the original work [4]
for further details.

B. Diffusion process

In Sec. 3.2 of the main paper, we describe the construction
of a conditional diffusion model, specifically employing the
Variance Exploding SDE [10]. During the forward process,
architectures are perturbed by Gaussian noise. To enable the
reverse generative process, the score network sθ is trained
to approximate the score function ∇x log pt(x). By incor-
porating information from the predictor, the generation pro-
cess is guided accordingly.

C. Score network

In Sec. 3.2 of the main paper, we introduce the score net-
work for capturing architectural structures and topological
relationships. Each architecture is represented as a directed
acyclic graph (DAG) with a node set and an adjacency ma-
trix. We employ Computation-Aware Transformer-based
Encoding (CATE) [13], which learns DAG representations
by processing similar architectures, masking operations,
and minimizing reconstruction error. However, CATE alone
may generate invalid architectures, such as disconnected
paths disrupting computational flow. To mitigate this, posi-
tional embeddings [11] enhance topological awareness [1].

The score network is trained only once per search space.
Due to computational constraints, for each search space, the
score network is trained unsupervised on a subset of archi-
tectures from the search space. Note that we extend our
work to the DARTS and NASViT search spaces. Specifi-
cally, we sample 500,000 architectures from DARTS, Mo-
bileNetV3, and NASViT, respectively, for unsupervised
training. Table A summarizes the hyperparameter settings
for the score network.

Table B. A summary of hyper-parameter settings for training pre-
dictors.

Parameters Settings
Batch size for training 256

Dropout rate 0.1
Initial learning rate 1.00E-03

Optimizer Adam
β1 in Adam optimizer 0.9
β2 in Adam optimizer 0.999

Warmup period 1000
Gradient clipping 1.0

D. Predictor

In Sec. 3.2 of the main paper, a predictor [6] is introduced to
map architectures and dataset features to the classification
accuracy of an architecture on a given dataset. The predic-
tor takes two inputs: architectural information and dataset
features. These inputs are fused to predict the classification
accuracy.

The architecture is represented as a directed graph and
processed through graph convolutional layers based on
DiGCN [12], capturing structural dependencies. The re-
sulting graph embeddings are then aggregated and passed
through a fully connected layer to obtain the architecture’s
latent representation.

For dataset features, images are first processed by
ResNet-18 [5] to extract image-level features, which are
then grouped by class. A Transformer-based Set Trans-
former [7] is employed to extract class prototypes and cap-
ture inter-class relationships via attention mechanisms, pro-
ducing the dataset’s latent representation.

The architecture and dataset latent vectors are concate-
nated and fed into a multilayer perceptron to predict clas-
sification accuracy. The predictor is trained using Mean
Squared Error loss with a sufficient amount of data.

Training data generation for each search space is as be-
low:
• DARTS: We save the supernet trained by FairNAS [3]

and evaluate the validation accuracy of 500,000 randomly
sampled subnets on ImageNet [9].

• MobileNetV3: We use the publicly
available pre-trained supernet weights
(ofa mbv3 d234 e346 k357 w1.0) from GitHub
and evaluate the validation accuracy of 500,000 randomly
sampled subnets on ImageNet.

• NASViT: We leverage [2]’s released checkpoint from
GitHub and evaluate the validation accuracy of 500,000
subnets on ImageNet.
The hyperparameters for training the predictor are sum-

marized in Table B.

2



E. Pseudocode

Algorithm 1 Pseudocode of PerFedSDE-NAS
Input: The number of clients N , number of participat-
ing clients per round n, number of searches performed by
the client ne, dimension of the discrete architecture encod-
ing D, pretrained conditional diffusion model, number of
generated candidate architectures Ngen, offspring size s,
archive size k.

1: Server initializes the supernet weights w0;
2: for each round r = 1 to R do
3: On Server:
4: clients ← Randomly sample n clients from

{1, 2, . . . , N};
5: Send supernet weights wr to selected clients clients;

6: On Client:
7: for each client i ∈ clients in parallel do
8: for j = 1 to ne do
9: Preliminary evaluation:

10: Initialize or inherit population Pj of size 3D;
11: Architecture diffusion generation (parallel to

supernet training):
12: Construct an RBF model based on Pj ;
13: Generate Ngen candidate architectures using

the conditional diffusion model;
14: offspring← Select the top s candidates from

Ngen candidate architectures using the RBF
model;

15: Supernet training (parallel to architecture
diffusion generation):

16: archive ← Select the top k architectures from
population Pj ;

17: Sample architectures from archive to train the
supernet, with only one epoch of training;

18: Candidate evaluation:
19: Evaluate offspring architectures using the up-

dated supernet;
20: Pj+1 ← Combine population Pj and

offspring, and then select the top 3D
architectures;

21: end for
22: Record the final population Pj and the test accu-

racy of the best individual;
23: Send weight updates ∆wi to the server;
24: end for
25: On Server:
26: wr←Aggregate client updates using Equation (5) in

the main text;
27: end for
Output: The best architecture and its weights for each
client.

Algorithm 1 outlines the proposed PerFedSDE-NAS,
and the key parameters used are defined as below: The total
number of clients N participating in personalized FL train-
ing, the total communication rounds R between the server
and clients, the number of clients n selected per round, the
number of local search iterations ne per client, the dimen-
sion D of the discrete architecture encoding, the pre-trained
conditional diffusion model, the number of architectures
generated Ngen by diffusion model per local search itera-
tion, the number of selected offspring architectures s, and
the archive size k.

The PerFedSDE-NAS framework begins when the server
distributes the pre-trained diffusion model to all clients. The
server initializes the supernet parameters (line 1) and exe-
cutes R communication rounds with the clients (line 2).

On the server side (line 3), the server selects n clients
from N total clients to participate in the current round (line
4) and transmits the supernet weights to them (line 5). After
receiving the weight updates from all participating clients
(line 26), the server aggregates these updates to refine the
global supernet parameters (line 27).

On the client side (line 6), the selected clients perform
a local architecture search in parallel (line 7). Each client
conducts ne local searches, training for only one epoch per
search (line 8). After completing the search process, each
client records the current population Pj , the best found ar-
chitecture along with its corresponding weights and test ac-
curacy (line 22), and transmits the supernet weight updates
to the server (line 23).

The search process consists of four main stages:
(1) Preliminary Evaluation: When j = 1, population

Pj is randomly initialized and evaluated, and when j > 1
Pj is inherited from the client’s previous search history (line
10). Note that the population size is 3D.

(2) Architecture Diffusion Generation (Parallel to Su-
pernet Training): A Radial Basis Function (RBF) model is
constructed based on the current population (line 12), and
Ngen candidate architectures are generated using the condi-
tional diffusion model (line 13). The top s architectures are
selected based on RBF model predictions (line 14).

(3) Supernet Training (Parallel to Architecture Dif-
fusion Generation): The top k architectures from Pj are
retained as the archive (line 16), and supernet training is
conducted by sampling architectures from the archive (line
17).

(4) Candidate Evaluation: The updated supernet
weights are used to evaluate the s offspring architectures
(line 19). The evaluated offspring is combined with the cur-
rent population, from which the next generation of popula-
tion is selected (line 20).

Finally, each client obtains a personalized solution,
including the model architecture and its corresponding
weights.

3



Figure A. Label distribution on CIFAR-100 (Dirichlet α = 0.1) across 100 clients used in our setup.

Table C. Extended ablation study on MobileNetV3.

Chal-
lenge

Method CIFAR-10 (α = 0.3) CIFAR-100 (α = 0.1)
Acc (%) Time (h) Acc (%) Time (h)

C1 Ours w/o (archive + diffusion) 80.06±5.38 17.53 60.98±5.16 17.33
C2 Ours w/o (archive + Eq.5) 79.82±5.36 17.55 60.88±5.31 17.30
C3 Ours w/o (Eq.5 + diffusion) 79.42±5.59 17.51 59.64±5.13 17.41
All PerFedSDE-NAS (Ours) 82.62±5.21 17.61 64.15±4.91 17.37

F. Visualization of Non-i.i.d. Data Distribution

Recently, Dirichlet distributions have been generally used
to replace manual splits for allocating data to each client by
varying α to simulate real-world scenarios, i.e., non-i.i.d.
data distributions (C1). Following this standard practice,
we simulate challenging non-i.i.d. settings with α = 0.1,
and the label distribution on CIFAR-100 is shown in Fig. A.
We can see extreme heterogeneity in both label space and
sample size across 100 clients. Notably, some client test sets
contain unseen labels (highlighted in red circles), which is
an extreme yet realistic non-i.i.d. challenge and underscor-
ing the need for cross-client knowledge transfer in PFL.

G. Extended Ablation Study

We reported ablation studies by removing each component
in Table 5. To further validate the effectiveness, Table C
provides an additional analysis of each component.

H. Computational Cost and Communication
Cost

We quantitatively analyze the computational and communi-
cation costs of client-side and server-side NAS-based PFL.
Specifically, we adopt PerFedRLNAS [14] for server-side
NAS-based PFL, while client-side NAS-based PFL meth-
ods are the baseline in the main paper and PerFedSDE-
NAS. The results are summarized in Table D.

H.1. Computational cost
A recap on the approaches under comparison is given be-
low:

(1) PerFedRLNAS [14]: Reinforcement learning is used
at the server to search for personalized architectures for
each client. Once an architecture is selected, the client di-
rectly trains it and reports the trained network weights along
with the test accuracy.

(2) PerFedSDE-NAS (Ours): A conditional diffusion
model is employed for local architecture search on clients.
During the iterative search, a number of candidate archi-
tectures are evaluated to identify better architectures. Only
the supernet weights are transmitted between the server and
clients, ensuring no additional privacy leakage.

(3) Baseline: PerFedSDE-NAS is modified by replacing
the diffusion model with crossover and mutation operations
for candidate architecture generation.

The federated learning settings are kept consistent across
all methods: 1500 communication rounds, with 5 clients

4



Table D. Time analysis.

Type Method Prelim Eval
(s)

Parallelization (s) Eval (s) Sum (s) Comms (M)Training Generation
Server PerFedRLNAS [14] − 13.197±0.159 − 0.156±0.11 13.353±0.807 0.0159±0.0008

Client Baseline 23.893±0.124 12.993±0.218 1.029±0.021 8.849±0.122 45.736±2.488 0.2319±0.0000
PerFedSDE-NAS (Ours) 20.410±0.008 12.745±0.134 10.130±1.328 7.560±0.008 40.714±2.011 0.2319±0.0000

participating per round, each performing 5 local search iter-
ations, where each iteration involves one epoch of supernet
training.

For systematic analysis, we decompose the client-side
NAS-based PFL process into three stages, i.e., preliminary
evaluation, search process, and candidate evaluation, de-
noted as “Prelim Eval (s),” “Parallelization (s),” and “Eval
(s)” in Table D, respectively. The total computation time is
summarized in the column “Sum (s),” all measured in sec-
onds.

(1) Preliminary evaluation: This stage is absent in
PerFedRLNAS. In PerFedSDE-NAS and Baseline, upon
initializing the population, the accuracy of 135 architectures
needs to be re-evaluated due to updated supernet weights,
with each evaluation taking approximately 0.16 seconds per
architecture.

(2) Search process: PerFedRLNAS requires training
only the assigned subnet for 5 epochs without generating
new candidates. In contrast, PerFedSDE-NAS and Baseline
sample diverse subnets to update the supernet weights while
concurrently generating candidate architectures. Although
the inference time for generating 100 architectures using the
diffusion model is longer than that of crossover and muta-
tion operators, it remains computationally cheaper than su-
pernet training. As the data volume and training configura-
tions are identical, the overall training time across methods
remains comparable.

(3) Candidate evaluation: PerFedRLNAS evaluates
only a single architecture, whereas PerFedSDE-NAS and
Baseline evaluate 50 architectures across 5 iterations, i.e.,
10 architectures per iteration. Consequently, the evaluation
time for PerFedSDE-NAS and Baseline is approximately 50
times that of PerFedRLNAS.

(4) Total computation cost: The total runtime of client-
side NAS-based PFL is approximately three times that of
server-side NAS-based personalized FL, primarily due to
the repeated evaluation of candidate architectures.

Additionally, the computational overhead at the server
side is significantly higher in server-side NAS-based PFL
compared with client-side NAS. While client-side NAS-
based PFL only requires aggregating supernet weights,
server-side NAS-based PFL must perform architecture
searches for each client, further increasing computational
costs.

H.2. Communication cost
We also measure the communication cost between the
server and clients, defined as the total transmitted data in
bytes. The results are reported in Table D under the column
“Comms (M).” The communication cost is computed as the
total transmitted bytes divided by the total communication
rounds and the number of participating clients per round.
The results are presented in megabytes (M), including mean
and standard deviation.

Notably, the communication cost of server-side NAS-
based PFL is only 7% of that in client-side NAS-based
PFL. This is because server-side NAS transmits only sub-
networks instead of the full supernet. However, this ap-
proach introduces significant privacy risks, as the server
gains access to client-specific solutions, including architec-
tures, weights, and evaluation metrics.

References
[1] Sohyun An, Hayeon Lee, Jaehyeong Jo, Seanie Lee, and

Sung Ju Hwang. Diffusionnag: Predictor-guided neural ar-
chitecture generation with diffusion models. In ICLR, 2024.
2

[2] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and
Song Han. Once for all: Train one network and specialize
it for efficient deployment. In International Conference on
Learning Representations, 2020. 1, 2

[3] Xiangxiang Chu, Bo Zhang, and Ruijun Xu. Fairnas: Re-
thinking evaluation fairness of weight sharing neural archi-
tecture search. In Proceedings of the IEEE/CVF Interna-
tional Conference on computer vision, pages 12239–12248,
2021. 2

[4] Chengyue Gong and Dilin Wang. Nasvit: Neural architec-
ture search for efficient vision transformers with gradient
conflict-aware supernet training. ICLR Proceedings 2022,
2022. 1, 2

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 2

[6] Hayeon Lee, Eunyoung Hyung, and Sung Ju Hwang. Rapid
neural architecture search by learning to generate graphs
from datasets. In 9th International Conference on Learning
Representations, ICLR 2021, 2021. 2

[7] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Se-
ungjin Choi, and Yee Whye Teh. Set transformer: A frame-
work for attention-based permutation-invariant neural net-

5



works. In International conference on machine learning,
pages 3744–3753. PMLR, 2019. 2

[8] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:
Differentiable Architecture Search. In International Confer-
ence on Learning Representations, 2018. 1

[9] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International Journal of
Computer Vision, 115(3):211–252, 2015. 2

[10] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-based
generative modeling through stochastic differential equa-
tions. In International Conference on Learning Represen-
tations, 2021. 2

[11] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 2

[12] Wei Wen, Hanxiao Liu, Yiran Chen, Hai Li, Gabriel Ben-
der, and Pieter-Jan Kindermans. Neural predictor for neural
architecture search. In European conference on computer vi-
sion, pages 660–676. Springer, 2020. 2

[13] Shen Yan, Kaiqiang Song, Fei Liu, and Mi Zhang. Cate:
Computation-aware neural architecture encoding with trans-
formers. In International Conference on Machine Learning,
pages 11670–11681. PMLR, 2021. 2

[14] Dixi Yao and Baochun Li. Perfedrlnas: One-for-all personal-
ized federated neural architecture search. In Proceedings of
the AAAI Conference on Artificial Intelligence, pages 16398–
16406, 2024. 4, 5

6


	Search space
	DARTS
	MobileNetV3
	NASViT

	Diffusion process
	Score network
	Predictor
	Pseudocode
	Visualization of Non-i.i.d. Data Distribution
	Extended Ablation Study
	Computational Cost and Communication Cost
	Computational cost
	Communication cost


