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Supplementary Material

Algorithm 1 Denoising steps with Latent Optimization for
Disentangled Attention (LODA)

1: Input: initial latent zT , prompt P , set of token indices
S, set of timesteps t = {T, . . . , 0}, threshold γ, Stage1
end step N , Stable Diffusion model SD.

2: Output: Denoised latent z0
3: step← 0
4: for t = T down to 0 do
5: if step < N then
6: At ← SD

(
zt,P, t

)
7: for each token index i in S do
8: Ai

t ← At[:, :, i]
9: Ai

t ← Gaussian
(
Ai

t

)
10: P i

t ← Normalize
(
As

t

)
11: end for
12: KLH

t ← HM
(
{KL(i,j)

t | i, j ∈ S, i ̸= j}
)

13: LKL ← ReLU(γ − KLH
t )

14: z′t ← zt − ηt∇zt LKL

15: end if
16: zt−1 ← SD

(
z′t,P, t

)
17: step← step + 1
18: end for
19: return z0

Method Dog Cat
SD -0.003600 -0.004531

ToVA -0.003041 -0.005061
Modifying K -0.000266 -0.000280

Modifying K,V -0.000359 -0.000176
Cones2 -0.000385 -0.000421

Textual Inversion -0.000933 -0.001004

Table 1. Average entropy change of attention maps (∆H)
across diffusion steps. We extract attention maps corresponding
to the tokens “cat” and “dog” from the prompt “A photo of a dog
sitting next to a cat”.

A. Experimental Detail
We used the RTX3090 graphic card for training and infer-
ence. For inference, we used DDIM scheduler [11] with 50
steps and 7.5 classifier-free guidance weight [4]. We use
Stable Diffusion v2-11 with 768x768 resolution as the pre-
trained model.

1https : / / huggingface . co / stabilityai / stable -
diffusion-2-1

Textual Inversion [2]. We use the third-party implemen-
tation of huggingface [12] for Textual Inversion. We train
each setting with a learning rate of 5 × 10−4, step size of
3000, and batch size of 4.
DreamBooth [10]. We use the third-party implementation
of huggingface [12] for Dreambooth. We train each setting
with a learning rate of 1× 10−5, step size of 400× number
of subjects, and batch size of 1. Prior preservation loss was
used, and a loss weight of 1 was used. 200 class images
were used for prior preservation loss.
Custom Diffusion [5]. We use the official implementation
of custom diffusion2. We train each setting with a learning
rate of 1 × 10−4, step size of 500× number of subjects,
and batch size of 1. Generated images shown in our paper
were trained with prior preservation loss that prevents the
leak of personalized concepts when generating other con-
cepts in diffusion models. Loss weight of 1 was used for
prior preservation loss. 200 class images were used for prior
preservation loss.
Cones2 [6]. We use the official implementation for
Cones23. We train each setting with a learning rate of
1×10−4, step size of 1500, and batch size of 1. With prompt
regularization. We implement layout guidance for inference
2 objects and 3 objects.
EDLoRA [3]. We use the official implementation for ED-
LoRA4. We implement this code to SD2.1 for comparison.
We train each EDLoRA with setting with learning rate of
1×10−3 for text embedding, 1×10−5 for text encoder and
1× 10−4 for unet. We set every rank of LoRA to 4. We set
the alpha value for gradient fusion to 1 for the U-net and
text encoder.
ConceptSplit (Ours)
ToVA. We used LoRA with rank 64 for our ToVA, and we
used prompt regularization, as proposed in Cones2 [6] We
utilized 200 prompts using ChatGPT [8] and apply different
prompt for each iteration. We trained with 300 iterations for
our experiments. With a learning rate of 1e-4 and batch size
of 1.
LODA. We set LODA step N to 10. with percent hyper-
parameter γ 0.9 and ReLU threshold τ to 1.0. We set each
strength hyperparameter p,m to +5 and -1e8. Update rate ηt
was scheduled linearly with 40 − 20 · t

T , where T denotes
the total steps.

2https : / / github . com / adobe - research / custom -
diffusion

3https://github.com/ali-vilab/Cones-V2
4https://github.com/TencentARC/Mix-of-Show.git
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https://github.com/TencentARC/Mix-of-Show.git


# of Concepts Method Capacity Times

Single concept

Textual Inversion [2] 4.2KB ∼ 2h
DreamBooth [10] 5.2GB ∼ 7m

Custom Diffusion [5] 97.5MB ∼ 12m
Cones 2 [6] 4.2KB ∼ 35m

EDLoRA [3] 6.6 MB ∼ 28m
ConceptSplit (Ours) 7.4MB ∼ 3m

Two concepts

Textual Inversion [2] 8.4KB ∼ 4h
DreamBooth [10] 5.2GB ∼ 14m

Custom Diffusion [5] 97.5MB ∼ 24m
Cones 2 [6] 8.4KB ∼ 70m

EDLoRA [3] 13.2MB ∼ 56m
ConceptSplit (Ours) 14.8MB ∼ 6m

Three concepts

Textual Inversion [2] 12.6KB ∼ 6h
DreamBooth [10] 5.2GB ∼ 21m

Custom Diffusion [5] 97.5MB ∼ 36m
Cones 2 [6] 12.6KB ∼ 105m

EDLoRA [3] 19.8MB ∼ 84m
ConceptSplit (Ours) 22.2MB ∼ 9m

Four concepts

Textual Inversion [2] 16.8KB ∼ 8h
DreamBooth [10] 5.2GB ∼ 28m

Custom Diffusion [5] 97.5MB ∼ 48m
Cones 2 [6] 16.8KB ∼ 150m

EDLoRA [3] 19.8MB ∼ 112m
ConceptSplit (Ours) 29.6MB ∼ 12m

Table 2. Comparison of model capacity and training time
across different personalization methods on Stable Diffusion
v2.1. This table presents a comparison of storage size (capacity)
and training time for various personalization techniques, includ-
ing Textual Inversion [2], DreamBooth [10], Custom Diffusion [5],
Cones 2 [6], EDLoRA [3], and ConceptSplit (ours). ConceptSplit
consistently demonstrates lower capacity requirements and faster
training times.

B. Analysis of Attention Entropy

As shown in Figure 3 in the main paper, We found out
that such key-modifying methods show disrupted attention,
we first extract the attention map from U-net while for-
warding, using the attention store class and storing every
attention map for steps. After inference is ended, we ag-
gregate these attention maps which have a resolution of
24 in every layer in U-Net. We extract the attention map
from 24, as it is known to have the most semantic informa-
tion [9]. Then averaged them and applied softmax to make
them probability distribution. Then we calculated Entropy
H = −

∑
m,n Â(m,n) log Â(m,n), where Â ∈ R24×24 de-

notes aggregated, and normalized attention map. We calcu-
lated the average change of this entropy, which shows a de-
tailed slope on 1. We found out that when we modify these
keys, the model gets confused, and through attention map
seems to be noisy and disrupted as shown in Figure 4 in the
main paper.

C. Qualitative results of ToVA Ablation.
We show our Qualitative results of ToVA ablation in Figure
6. These results show that modifying the key directly, results
in degraded images.

D. Algorithm of LODA
We show an algorithm of LODA on Algorithm 1, which we
discussed in Section 3.3 in the main paper.

E. Qualitative results of single Object
We show qualitative results of single Object personalization
in Figure 1. Our methods show comparable results to exist-
ing methods.

F. LODA to Stable Diffusion
In Figure 5, we compare the results of applying our
LODA to the pre-trained Stable Diffusion [9] model without
personalization against Attend-and-Excite [1]. Attend-and-
Excite focuses on increasing the maximum attention values,
which often leads to significant concept mixing. In contrast,
LODA actively relocates and separates objects, enabling
Stable Diffusion to effectively distinguish between them.
This demonstrates that LODA is not effective in scenarios
of personalization, rather it can boost the performance of
the pre-trained Stable Diffusion model.

G. Ours on SDXL
We also implement our method to SDXL[7], showing fea-
sibility for both vanilla and personalized settings as shown
in figure 4.

H. Hyperparameter Ablations
H.1. The Effect of the Percentile γ

In Figure 2, we illustrate the visual effects of varying the
percentile hyperparameter γ. A low γ value means we con-
sider broader attention regions for each token. When ap-
plied to Attention Fixing Guidance, this broad consideration
leads to excessive removal of overlapping areas, hindering
successful personalization. As γ increases to around 80 or
higher, proper fixation of attention occurs. However, setting
γ too high, such as at 99, results in only very localized re-
gions being fixed, failing to adequately suppress the influ-
ence of the “cat” token. Consequently, this leads to images
where, for example, a dog has cat whiskers, indicating that
the “cat” token’s influence was not sufficiently reduced.

H.2. The Effect of p,m
In Figure 3, we present how the images change based on the
parameters p and m, which are used to strengthen or weaken



Figure 1. Qualitative comparison in single-object scenarios on Stable Diffusion 2.1. In single-object scenarios, our approach ensures
that the background is appropriately generated alongside the target concept, maintaining contextual integrity.

attention, respectively. Adjusting the value of p slightly en-
hances individual features but does not produce significant
overall differences in the generated images. However, ap-
plying the parameter m has a substantial impact; when m
is applied, the influence of each token on other tokens di-
minishes, causing the learned concepts to appear more dis-
tinctly. In contrast, without applying m, the resulting im-
ages exhibit a mixed form due to overlapping token influ-
ences.



Figure 2. Effect of hyperparameters p and m, which respectively strengthen and weaken the attention scores of each token.

Figure 3. Effect of hyperparameters p and m, which respectively strengthen and weaken the attention scores of each token.



Figure 4. Application of our method to SDXL. Our approach is implemented on SDXL, demonstrating feasibility in both vanilla and
personalized settings.

Figure 5. Comparison of Attention-and-Excite (AaE) [1] and LODA on Stable Diffusion 1.5. This figure illustrates the differences in
concept preservation and controllability between AaE and our proposed method, LODA. While AaE focuses on attention refinement to
better represent multiple objects, LODA further enhances concept disentanglement, reducing interference between personalized concepts.



Figure 6. Qualitative results of ToVA ablation.
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