Event-Driven Storytelling with Multiple Lifelike Humans in a 3D Scene

Supplementary Material

In this supplementary material, we provide additional
details not covered in the main text (Section A). We also
present further experimental results (Section B) and visual-
ization of our user study (Section C).

A. Further Details
A.1l. Runtime Logic

Algorithm 1 illustrates the high-level runtime logic of our
framework. In the preprocessing stage (Line 4-6), our
framework extracts the scene graph G from the 3D scene
S and generates a scene description D using the scene de-
scriber. The generated scene description D is then used re-
peatedly by the narrator and event parser during runtime.
In the main runtime loop (Line 7-22), the framework first
checks if a new event is required. A new event is created
only when there are characters that are not assigned to any
ongoing event. If a new event is required (Line 9-13), the
narrator generates a new event by determining who should
be involved among those characters and what activity they
should perform. The event parser then parses the generated
event, and our framework assigns the event and its parsed
information (target position p;, orientation d;, and action
label a;) to the characters involved in the event. After the
behavior planning of the action planning module, the mo-
tion synthesis module advances the characters’ motions re-
spectively, based on their assigned events (Line 15-21). If
a character is on the move to its target position, the mo-
tion synthesis module periodically updates the character’s
collision-free path to follow using the windowed coopera-
tive A* algorithm [10]. A character’s motion is advanced
by synthesizing the next frame of the motion using the mo-
tion matching algorithm [2] based on its current state and
assigned action label. The state of each character is main-
tained internally to manage the progress of the assigned
event and to determine the type of motion to synthesize.
For example, if a character is approaching the target posi-
tion (approaching state), locomotion following the planned
path is synthesized. But if a character is during an interac-
tion after reaching the target position (inferacting state), a
corresponding interaction motion is synthesized according
to the assigned action label. In our framework implemen-
tation, we define five states: idle, approaching, interacting,
transition_in (standing to sitting), and transition_out (sitting
to standing).

A.2. Scene Graph Construction

In the preprocessing stage, the scene describer generates a
textual description D of the scene S based on the 3D scene

Algorithm 1 High-Level Runtime Logic of the Framework

Required: 3D scene S, characters C
Optional: user instructions 7

1:
2:
3:
4: Create the 2D grid map of S

5: Extract the scene graph G from S
6: Generate a scene description D > scene describer
7: while Framework is running do

8 Check if a new event is required

9

if A new event is required then

10: Generate a new event > narrator
11: Parse the event > event parser
12: Allocate the event to the associated characters
13: end if

14:

15: for Each character ¢; in the scene do

16: if ¢; is on the move to the target position then
17: Update ¢;’s collision-free path

18: end if

19: Advance ¢;’s motion

20: Update ¢;’s state

21: end for

22: end while
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Figure 10. Spatial relationships used in the scene graph construc-
tion.

graph. In this section, we detail the construction of the
scene graph below.

To construct a scene graph G = (V,€) from the seg-
mented objects in the 3D scene S, we follow the automated
scene graph construction pipeline proposed in [7], but with
a more simplified list of spatial relationships. At first, we
initialize the nodes V with the segmented objects in the 3D
scene. For each object, we compute the z-axis aligned 3D
bounding box b; = {p},p?,....p}} € R8*3 of the object,
where the pg (j € {1,...,8}) is a vertex composing the b;,
and estimate the orientation d; € R? using the geometric



heuristics proposed in [11]. After the nodes are initialized,
we traverse the nodes and compute their spatial relation-
ships to construct the edges £. The spatial relationships are
categorized into two types: vertical and horizontal relation-
ships, the full list of which is provided in Figure 10. To
avoid the explosion of the number of edges, we first deter-
mine the support level of each object based on the Support
relationships, and limit the spatial relationships based on the
support level. Starting from the support level zero objects,
which are directly supported by the floor, if an object O; is
supported by another object O;, the support level of O; is
defined as the support level of O; plus one. Those objects
that are not supported by any other objects are defined as
the hangable objects. We allow the horizontal relationships
to be computed only between objects with the same support
level, and compute Above/Below relationships only for the
hangable objects. All the spatial relationships are heuristi-
cally computed based on the relative distances and orienta-
tions of the 3D bounding boxes of the objects. For further
details of the spatial relationship computation, please refer
to our released code.

A.3. High-level Action Planning Module
A.3.1. Scene Describer

In our system, the scene describer takes a scene graph, ex-
tracted from the 3D scene and converted into JSON format,
as input and transforms it into a context-centric scene de-
scription. We provide object cluster information to help the
scene describer better recognize regional context from the
given 3D scene. For object clustering, we apply the DB-
SCAN algorithm [3] to objects present in the scene. The
distance between objects is computed in 3D space as the
distance between their bounding boxes. The key parame-
ters of the DBSCAN algorithm, eps and minimum samples
required to form a dense region, are set to 1.0 and 2, respec-
tively. In Figure 11, we present examples of how our scene
describer extracts key interesting areas from unseen scenes.
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Figure 11. Key area extraction on MPH8 from PROX dataset [4].

A.3.2. Narrator

The narrator performs multi-agent behavior planning on a
given scene based on semi-narrative events. The narrator
generates new events only for characters not assigned to an
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Figure 12. Semantic area representation examples.

‘ongoing’ event in the current scene. If the LLM fails to
follow this rule correctly, it receives feedback identifying
characters that should not be included in the event and re-
generates a corrected event based on this feedback. If all
characters are engaged in ongoing events, the narrator does
not generate new events and waits until a character com-
pletes their event.

A.3.3. Event Parser

The event parser utilizes programming-structured prompts
and the area-conditioned position sampling method to parse
events into low-level information. In the programming-
structured prompt approach, we enable the event parser to
use the following functions as spatial reasoning tools.

* get_object_supporting (anchor)

* get_objects_supported._by (anchor)

* get_objects_in_front_of (anchor)

* get_objectsbehind (anchor)

¢ get_objects_left_of (anchor)

* get_objects_right_of (anchor)

* get_objects_close_to (anchor)

* get_objects_associated.with (anchor)

* get_objects_between (anchor_1l, anchor_2)
* get_closest_object (anchor)

e get_intersected.area(area.l, area.2)

* get_distance_between (object_1l, object_2)
* is_object_occupied (object)

e is_object_of_label (object)

Using these functions, the event parser can more easily
retrieve objects and determine the appropriate area for char-
acter target position sampling based on the retrieved objects.

Our area-conditioned position sampling method enables
the LLM to process a character’s target position at a seman-
tic level. To achieve this, the event parser is provided with
the following area retrieval functions.

* get_area_to_interact_with (object)

* get_area-to_sit_on (object)

* get_area_adjacent_to (object)

* get_area_close_to (object)

* get_area-in_front_of (object)

* get_areabehind (object)

* get_area_left_of (object)

* get_area.right_of (object)

* get_area between (object_1, object_2)

* get_area_aligned.with (object_.1l, object_2)

As shown in Figure 12, the event parser can meaning-
fully represent a character’s target position without directly



handling coordinate-level representations. Once an area is
specified, the exact coordinates are sampled from within the
area. The specific area size represented by each semantic
expression, such as close to, is controlled by user hyperpa-
rameters.

A.4. Low-level Motion Synthesis Module

Our framework requires generating various types of mo-
tion to represent characters’ daily life activities, including
path-following locomotion, human-scene interaction mo-
tions, and human-human interaction motions. To efficiently
cover these diverse motion types and generate stable mo-
tions in an online manner, we implement the motion syn-
thesis module using the motion matching algorithm [2]. Our
motion synthesis module utilizes SMPL-X [9] to represent
character bodies and synthesize character animations at a
frame rate of 30 fps.

A.4.1. Motion Database

Prior to motion synthesis, our framework defines a set of
action labels, and we construct separate motion databases
corresponding to each action label. Specifically, motions
for daily life activities such as locomotion, drinking, eat-
ing, and laptop usage are collected from the AMASS
dataset [8] and Mixamo [1]. Human-scene interaction mo-
tions like sitting and lying down are gathered from the
SAMP dataset [5]. Human-human interaction motions, in-
cluding chatting, hugging, and handshaking, are sourced
from the Inter-X dataset [12]. All motions are downsam-
pled initially to align with the 30 fps. Each action label
has a dedicated motion database, allowing efficient database
searching and the use of distinct matching features tailored
to the characteristics of each action.

A.4.2. Motion Matching Details
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Figure 13. Matching features example.

Our motion synthesis module utilizes the following
matching features:
* Keyjoint Positions: Positions of key joints J expressed
in the character’s local frame (R37).

» Keyjoint Velocities: Velocities of key joints J in the local
frame (R37).

* Future Positions: Ground-projected 2D positions of the
future trajectory (at 10, 20, and 30 frames ahead) in the
character’s local frame (RS).

* Future Directions: Ground-projected 2D facing direc-
tions of the future trajectory (at 10, 20, and 30 frames
ahead) in the character’s local frame (R®).

* Relative Position: 2D relative position of the character
with respect to a specified target position (R?).

* Relative Velocity: 2D relative velocity of the character
concerning a specified target position (R?).

* Relative Direction: 2D relative direction of the character
towards a specified target direction (R?).

» Target Root Height: Height of the character’s target root
position (R1).

Keyjoint positions, keyjoint velocities, future positions, and

future directions are all represented local to the character’s

root (pelvis) and facing direction.

As shown in Figure 13, when generating locomotion
along a defined path, we employ keyjoint positions, keyjoint
velocities, future positions, and future directions as match-
ing features and pelvis, spine3, right_foot and
left_foot as keyjoints. For human-scene and human-
human interactions, we utilize relative position, velocity,
and direction as primary matching features, with an ad-
ditional target root height feature specifically included for
human-scene interactions to ensure accurate sitting posi-
tions. For in-place activities such as eating and drinking,
matching relies solely on keyjoint positions and velocities
with pelvis, spine3, right_wrist, left_wrist,
right_foot and left_foot as keyjoints. The pose vec-
tor structure and next-frame generation process for actual
animation follow the methodologies presented in [6].

A.5. Benchmark
A.5.1. Test Scenes

In Figure 14, 15, and 16, we provide visualizations of our
test scenes used in our benchmark. Each scene is designed
to include two to three separate areas with distinct contex-
tual meaning. The House scene is approximately 51.57m?
in size and was created by placing 23 objects from 14 dif-
ferent object categories. The Office scene is approximately
160.2m? and includes 51 objects from 11 different object
categories. The Restaurant scene is approximately 72.25m?
and consists of 39 objects from 11 different object cate-
gories.

A.5.2. Test Settings

Here, we provide additional details of our benchmark test
settings. To address the randomness inherent in LLMs, we
repeat each test case five times and average the results. We
also set the temperature parameter, which affects output



Figure 14. House scene.
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Figure 15. Office scene.

Figure 16. Restaurant scene.

variability, to 0.1 throughout all experiments. Such a low
temperature value generally makes LLM responses more
deterministic. The scene descriptions are pre-generated in
five versions for each test scene using GPT-40, and the cor-
responding version with the matching index of trials is fed
into the action planning module, such that the n'" trial ob-
serves n' scene description. The LLM planning module
also observes input prompts with examples. We prepare a
set of examples for each tag, and the system dynamically se-
lects examples with the tags of the current test case. None
of the examples include test scenes, ensuring that the LLM
performs the benchmark in unseen environments.

B. Additional Results
B.1. Additional Benchmark Results

In Table 3 we present additional benchmark results that
were not included in the main text. The results from the
additional LLM models further confirm that our approach
achieves the best overall performance in scene-aware multi-
agent planning.

B.2. Experiment using Vision-Language Model

Figure 17. An example of a top-view image used in our VLM-
based approaches.

We additionally conduct experiments on planning meth-
ods using vision-language models (VLMs).

Vision-based Description First, we evaluate how well a
VLM utilizes visual information to generate high-quality
scene descriptions. In the Vision-based Description ap-
proach, we maintain the existing planning pipeline but re-
place the scene description input for both the narrator and
event parser with a vision-generated scene description. To
achieve this, we modify the scene describer, which previ-
ously generated descriptions based on scene graphs. In-
stead, as shown in Figure 17, the updated scene describer
generates detailed descriptions using top-view images along
with object labels and position information.

Vision-based Planning In the Vision-based Planning ap-
proach, the narrator and event parser perceive scene infor-
mation through visual inputs rather than textual scene de-
scriptions. To enable this, we replace the scene description
previously provided as input with a top-view image along
with object labels and position information, allowing the
system to perform planning based on visual data.

Benchmark results for VLM-based approaches Table 4
presents the benchmark results for the Vision-based De-
scription and Vision-based Planning approaches described
earlier. For these experiments, we use GPT-40 and GPT-40
Mini as foundation models capable of processing visual in-
formation. The benchmark settings remain the same as in
original experiments.



Model \ Llama-3.1-405B \ Llama-3.3-70B \ DeepSeek-V3

Metrics | Total OA RC SS |  Total OA RC SS | Total OA RC SS
Ours 0.66 (0.82) 0.74 (0.84) 0.71(0.88) 0.52(0.68) | 0.74(0.88) 0.8(0.94) 08(0.95) 0.6(0.77) | 0.83(0.98) 0.83(0.96) 0.87(1.0)  0.82(0.96)
w/o Event 0.6(0.71)  0.46(0.58) 0.68(0.77)  0.6(0.72) | 0.66(0.83) 0.65(0.79) 0.68(0.86) 0.65(0.79) | 0.82(0.95) 0.89(0.97) 0.84 (095 0.75(0.9)
Object List | 0.36(0.71) 038 (0.69) 0.25(0.79) 0.45(0.7) | 0.33(0.65 04(0.72) 0.11(0.49) 044 (0.68) | 04(081) 042(0.81) 0.19(0.76) 0.5(0.79)
Scene Graph | 0.65(0.83)  0.78 (0.88) 0.68(0.92) 0.52(0.68) | 0.72(0.85)  0.68(0.9) 0.84(0.92) 0.57(0.71) | 0.76(0.98)  0.83(1.0)  0.73(0.96) 0.76 (0.95)

Table 3. Additional benchmark result for test cases with object arrangement reasoning (OA), regional context reasoning (RC), and scene

state reasoning (SS) tags.

Model | GPT-40 | GPT-40 mini |
Metrics | Total OA RC SS | Total OA RC SS

Ours 0.9 (0.98) 0.93(0.99) 0.9(0.98)  0.92(0.98) | 0.74 (0.96) 0.72(0.95) 0.72(0.97) 0.78 (0.93)
Vision-based Description | 0.68 (0.97) 0.66 (0.98) 0.63(0.96) 0.76 (0.95) | 0.48(0.92) 0.41(0.93) 0.47(0.91) 0.53 (0.86)
Vision-based Planning 0.67 (0.91) 0.69(0.92) 0.52(0.87) 0.65(0.86) | 0.38(0.86) 0.43(0.86) 0.15(0.81) 0.52(0.84)

Table 4. Additional benchmark results for planning methods using vision-language models.

As shown in Table 4, vision-based planning methods per-
form far worse than our text-based approach. This suggests
that more refined methodologies are needed to achieve ef-
fective planning through vision-based scene understanding.
Further exploration in this area could lead to improvements
in future work.

C. User Study

In this section, we present the test scenarios used in the user
study, as shown in Figures 18, 19, 20, and 21. For each sce-
nario, users are provided with full videos and snapshots of
results generated from different ablation settings. They vi-
sually examine these results to identify any misrepresented
events in the user instruction and ultimately select the out-
come they find most accurate. We provide all full videos
used in the user study in the supplementary video.

User Instruction

{character_A} do his programming assignments in the desk, while {character_B} and
have a conversation in the sofa.

Figure 18. Test scenario employed in the user study for the
MPHI11 scene.
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