CleanPose: Category-Level Object Pose Estimation via Causal Learning and
Knowledge Distillation

Supplementary Material

A. More Loss Function Details

The backbone of our method is based on AG-Pose [6]. In
addition to L. (Eq. (21)), there are some additional loss
functions to balance keypoints selection and pose predic-
tion. First, to encourage the keypoints to focus on different
parts, the diversity loss Lg4;, is used to force the detected
keypoints to be away from each other, in detail:
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where th is a hyper-parameter and is set as 0.01, P,E;)t
means the i-th keypoint. To encourage the keypoints to lo-
cate on the surface of the object and exclude outliers si-
multaneously, an object-aware chamfer distance loss L,cq
is employed to constrain the distribution of Pj,,;. In for-

mula:
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where P;bj denotes the point cloud of objects without

outlier points. Moreover, we also use MLP to predict

the NOCS coordinates of keypoints Pp7c € RNkpt X3,

Then, we generate ground truth NOCS of keypoints Pﬁ;t by
projecting their coordinates under camera space Pp,, into
NOCS using the ground truth Ry, t4¢, Sq¢. And we use the
SmoothL loss to supervise the NOCS projection:
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Hence, the complete form of overall loss (Eq. (22)) is as
follows:
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where the parameters are set as (Aq, Ao, Az, Ag, ) =
(1.0,5.0,1.0,0.3,0.01) according to AG-Pose [6] and fol-
lowing ablations.

B. More Details of Using ULIP-2

ULIP-2 [12] is a large-scale 3D foundation model with
strong perception capabilities for the point cloud modal-
ity. It offers multiple pre-trained versions of point cloud
encoders. In our model, there are two key steps that involve

the use of different pre-trained encoders of ULIP-2. (i)
In the knowledge distillation process, we leverage the pre-
trained PointBert [13], which achieves the best zero-shot
classification performance across all versions. Therefore, it
can provide comprehensive category knowledge guidance
for our model. In the ablation study Tab. 5d, we also com-
pared it with PointNet++ [10], which is more similar in ar-
chitecture to our model. The experimental results demon-
strate that our distillation method focuses more on category
knowledge rather than feature similarity. (ii) However, dur-
ing the initial construction of the dynamic queue, we use
the pre-trained PointNet++ [10], as the front-door adjust-
ment primarily focuses on the differences between samples.
We aim to avoid introducing confounders due to feature dis-
crepancies from different encoders. The additional ablation
study results in Tab. S2b also support our analysis.

C. Additional Ablations

Effect of varying queue lengths N,. Tab. Sla ablates the
different lengths of dynamic queue N,. The queue that is
too short results in insufficient sample diversity, while too
long affect memory efficiency and feature consistency. We
observe that the estimation performance achieves the peak
at the length of around 80, with slight declines upon fur-
ther increases. We speculate that the queue length is closely
related to task characteristics and data scale of COPE. We
select IV, = 80 in our model to balance between efficiency
and accuracy.

Effect of different sampling quantities N;. In Sec. 4.2
of main manuscript, we sample N, features for the specific
network design to perform front-door adjustment. We study
the influence with response to different sampling quantities
N in Tab. S1b. It can be found that a large Ny leads to a
slight performance degradation. We speculate that a larger
sample size may introduce noise and redundant information
that affects key features in causal inference. An appropri-
ate sample size can balance valid and redundant informa-
tion, prompting the model to focus on learning more repre-
sentative causal correlations. The results demonstrate that
N = 12 yields the most significant performance gains.

Varying balanced coefficient o for loss £ i p. In Sec. 4.3
of main manuscript, we introduce L2 loss to supervise the
feature-based distillation and use o to balanced its contri-
bution in overall loss function. We investigate the impact
of different ay in Tab. Slc. We observe that the better per-
formance is achieved when s is small, possibly because



Ny 52cm  5°5cm 10°2cm 10°5¢cm
20 57.0 64.6 75.1 84.7
50 60.8 67.3 77.9 86.4
80 61.7 67.6 78.3 86.3
200 59.4 66.1 78.0 85.9
500 58.8 65.3 76.8 85.8
1000 58.3 66.8 76.3 86.2
3000 57.7 65.5 75.6 85.0
10000 57.0 65.0 75.7 85.4

(a) Effect of varying queue lengths N

N ‘ 5°2cm 5°5¢m 10°2cm 10°5¢cm
6 60.7 66.3 77.8 85.8
12 61.7 67.6 78.3 86.3
18 59.4 66.5 78.8 86.8
24 58.5 65.8 77.8 85.9
48 56.8 64.9 76.3 85.6
80 56.9 64.4 76.2 85.8

(b) Effect of varying queue lengths Ng

[ ‘ 5°2cm 5°5¢cm 10°2cm 10°5¢m
0.005 59.3 66.8 78.0 86.4
0.01 61.7 67.6 78.3 86.3
0.1 58.4 65.1 77.6 85.9
0.5 57.3 63.9 76.2 86.0
1 56.9 63.4 76.4 85.4

(c) Effect of varying balanced coefficient cio

Table S1. Additional ablation studies on some hyper-parameters.
Default settings are colored in gray .

L p is comparable in magnitude to the pose loss function,
which is favorable for regression. The results show that our
method performs well under aig = 0.01.

Different queue initialization approaches. By default, we
construct confounders queue with features extracted by 3D
encoders of ULIP-2 [12]. Alternatively, we can randomly
initialize the queue, which should achieve the same effect
ideally. Therefore, we evaluate the performance between
two initialization approaches in Tab. S2a. The results indi-
cate the degraded performance with “Random” initializa-
tion strategy. We speculate that the randomly initialized
queue may introduce additional and uncontrollable con-
founders, limiting the model’s optimization potential.

Effect of different 3D encoder for initial construction of
the queue. Tab. S2b ablates the different 3D encoders of
ULIP-2 [12] for initial construction of the dynamic queue.
The results exhibit that using PointNet++ [10] yields the
most performance gains. As mentioned in Sec. B, the dy-
namic queue is utilized in the cross-attention phase of front-
door adjustment, thus primarily focusing on the differences
between samples. Using encoders with similar architectures
helps avoid introducing extra confounders.

Init. ‘ 5°2cm 5°5cem 10°2cm 10°5¢cm
Random 58.0 65.7 75.8 85.1
Extract 61.7 67.6 78.3 86.3

(a) Effect of different queue initialization approaches

3D Encoder ‘ 5°2cm  5°5cm 10°2cm 10°5¢cm
PointNet++[10] 61.7 67.6 78.3 86.3
PointMLP[9] 58.1 65.8 76.3 85.2
PointBert[13] 58.8 65.6 77.9 86.4

(b) Effect of different 3D encoders of ULIP-2 [12] for initial construction
of the queue.

Selector ‘ 52cm  5°5cm 10°2cm 10°5¢cm

Random 61.7 67.6 78.3 86.3

K-means 58.5 65.5 78.0 86.5
K-means (simi) 58.7 66.2 77.7 86.0

(c) Effect of distinct feature selectors

Table S2. Additional ablation studies on confounders queue. De-
fault settings are colored in gray .
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(a) Random feature selector (b) K-means feature selector

Figure S1. Illustration of different feature selectors in ablations
Tab. S2c.

Various feature selection strategies. In Sec. 4.2 of main
manuscript, we randomly sample N, features from queue
by default, as shown in Fig. S1(a). Optionally, we can first
use K-means to cluster the features of the queue, and then
select features from each cluster to form Fi,y,, as illus-
trated in Fig. S1(b). For fair comparison, the number of
clusters is set equal to Ngs. We investigate the impact of
these two feature selector in Tab. S2c. As shown in the ta-
ble, we observe that K-means-based feature sampling strat-
egy shows a decline in performance on strict metrics (5°2cm
and 5°5cm). We argue that k-means, which clusters by
Euclidean distance, may lose important boundary informa-
tion, thus affecting the model performance. Moreover, k-
means clustering needs to be performed after each queue
update, which increases computational load and training
costs. Therefore, we added a comparative experiment us-
ing similarity-based updates, denoted as ‘K-means (simi)’,
where (simi) refers to the ‘Similarity’ defined in Tab. 5a of
main text. In this case, clustering is only performed once



Category ‘ ToUjst  ToUsyt ToUrst ‘ 5%2emt 5°5emt 10°2emt 10°5cem?
bottle 51.3 494 37.1 75.7 81.7 79.9 87.8
bowl 100.0 100.0 93.8 93.3 98.2 95.0 99.9
camera 90.9 83.5 39.9 2.8 32 33.9 40.5
can 71.3 71.1 432 84.2 85.9 96.9 98.6
laptop 86.3 84.0 76.1 69.2 90.9 71.9 98.5
mug 99.6 99.4 86.1 452 45.6 91.9 91.9
Average ‘ 83.3 81.2 62.7 61.7 67.6 78.3 86.3

Table S3. Category-wise evaluation of CleanPose on REAL275 dataset. ‘*’ denotes CATRE [8] IoU metrics.

IoUz5/10Us0T

Methods foUrst Average [ Bottle Box Can Cup Remote Teapot Cutlery Glass Tube Shoe

NOCS[11] - 50.0/21.2 | 41.9/5.0 43.3/6.5 81.9/62.4 68.8/2.0 81.8/59.8 24.3/0.1 14.7/6.0 95.4/49.6 21.0/4.6 26.4/16.5
FS-Net[1] 14.8 | 74.9/48.0 | 65.3/45.0 31.7/1.2 98.3/73.8 96.4/68.1 65.6/46.8 69.9/59.8 71.0/51.6 99.4/32.4 79.7/46.0 71.4/55.4
GPV-Pose[3] 152 | 74.9/50.7 | 66.8/45.6 31.4/1.1 98.6/75.2 96.7/69.0 65.7/46.9 75.4/61.6 70.9/52.0 99.6/62.7 76.9/42.4 67.4/50.2
VI-Net[5] 204 | 80.7/56.4 | 90.6/79.6 44.8/12.7 99.0/67.0 96.7/72.1 54.9/17.1 52.6/47.3 89.2/76.4 99.1/93.7 94.9/36.0 85.2/62.4
SecondPose[2] 249 | 83.7/66.1 | 94.5/79.8 54.5/23.7 98.5/93.2 99.8/82.9 53.6/35.4 81.0/71.0 93.5/74.4 99.3/92.5 75.6/35.6 86.9/73.0
AG-Pose|[6] 53.0 | 88.1/76.9 | 97.6/86.0 54.0/13.9 98.3/96.7 100/99.9 53.9/37.2 99.9/98.5 96.0/93.3 100/99.3 81.4/45.0 99.7/99.5
CleanPose \ 53.9 \ 89.2/79.8 \ 99.9/79.1 51.4/28.7 99.9/99.7 100/99.9 71.2/57.8 99.0/94.0 97.8/91.0 100/99.6 72.7/48.4 99.8/99.8

Table S4. Overall and category-wise evaluation of 3D IoU on the HouseCat6D. 1 a higher value indicating better performance, ‘-’
means unavailable statistics. Overall best results are in bold and the second best results are underlined.

Seed | 1 42 500 1k 1w 10w | o® |
5%em | 614 615 617 614 613 61.7 | 0.03
5%cm | 6712 673 675 612 67.1 67.6 | 0.04

Table S5. Effect of different sampling seed during inference.

during the initial training. However, experimental results
also show that such strategy leads to further performance
degradation as one clustering loses the diversity of features.

Effect of different sampling seed during inference. We
have conducted additional experiments with 6 different ran-
dom seeds, as shown in Tab. S5. The computed variances o>
for metrics demonstrate stable performance across different
random seeds, indicating the robustness and reliability of
our method.

D. More Experimental Results

We report category-wise results of REAL275 [11] in
Tab. S3. Since there is a small mistake in the original
evaluation code of NOCS [11] for the 3D IoU metrics,
we present more reasonable CATRE [8] metrics follow-
ing [2, 7, 14]. Further, more detailed results of House-
Cat6D [4] are shown in Tab. S4. As for more restricted
metric IoUz5, our method also demonstrates state-of-the-art
performance (53.9%), further validating the effectiveness
of CleanPose in 3D IoU evaluation. Moreover, in category-
wise validation on ToUss and IoUsg, our approach obtains
state-of-the-art (e.g., Can, Cup, Glass and Shoe) or compet-

ID |Method | Visual Enc.|Param.| | IoU75 1|5°2cm? | TTL|ITT

1 |AG-Pose| ViT-S/14 | 223M | 61.3 57.0 |51.3| 35
2 |ours ViT-S/14 | 246M 62.7 61.7 |51.8| 33
3 |ours' ViT-S/14 | 246M 61.8 58.1 |51.6| 33
4 | AG-Pose| ResNetl18 | 220M | 60.9 56.2 |51.2| 35
5 |ours ResNetl18 | 243M 62.3 60.3 |51.6| 33

Table S6. Detailed comparison results. ‘*’ denotes CATRE [§8]
IoU metrics. “}’ represents replacement of causal module with
MLPs of the same number of parameters. TT: Traning Time
(min/epoch), IT: Inference Speed (Frame/sec). Overall best results
are in bold and the second best results are underlined. Default set-
tings are colored in gray .

itive results across all categories. It is worth mentioning that
our method exhibits more stable performance on these two
metrics. For instance, compared to the current sota method
AG-Pose [0] in the Box category, our method achieves the
best performance (28.7%) on IoUsq metric when both ob-
tain competitive results on IoUss metric, with a significant
reduction of the AG-Pose (13.9%).

E. Detailed Comparison with SOTA method

We follow the domain consensus to report the metric accu-
racy in main manuscript. Moreover, we add more terms,
e.g. visual encoder type, inference latency (FPS), in Tab. S6
for comprehensive comparison. As confirmed in (#1) and
(#2) of Tab. S6, the front-door adjustment only increases the



(b) The prediction of our debaised model
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Figure S2. Effect of debiasing. Illustrated by Yaw angle distribu-
tions of the mug category.

number of parameters by 10% (246M vs. 223M), while the
running time remains nearly unchanged (33 vs. 35 in FPS).
To ensure a fair comparison, we also replace the front-door
module with MLPs that have the same number of parame-
ters (#3). The results further demonstrate the superior effec-
tiveness of causal learning. What’s more, we include addi-
tional results with ResNet18. Specifically, our method still
outperforms AG-Pose with ResNetl8 setting (#4 vs. #5),
further supporting the efficacy of our approach.

F. Effect of Debiasing.

We evaluate the debiasing effect via rotation distributions.
As shown in Fig. S2, the predictions of baseline model are
clearly biased toward the training set distributions, while the
debiased model primarily unaffected.

G. Limitation and Broader Impact

Limitation and future work. While our method achieves
superior results in various challenging benchmarks of
category-level pose estimation, there are still several as-
pects for improvement. First, although the front-door ad-
justment is effective, the investigate on the application of
causal learning methods remains incomplete. Therefore,
exploring further use of different causal learning methods
such as back-door adjustment and counterfactual reasoning
may enhance the performance of CleanPose. Second, de-
spite the guidance of the causal analysis, the network mod-
ules in actual implementation may induce inaccuracy in-
evitably. Such a flaw introduces a gap between the causal
framework and the network design. In future work, we will
further study advanced algorithm design strategies.

Broader Impact. For tasks with parameter regression
properties, e.g., category-level pose estimation, the current
mainstream approaches focus on exploring advanced net-
work designs to perform data fitting. We believe that re-
lying solely on learning statistical similarity can also intro-
duce spurious correlations into parameter regression mod-
els, thereby damaging the model’s generalization ability.
We hope this work brings new insights for the broader
and long-term research on parameter regression tasks. Be-
sides, adapting foundation models to downstream tasks has
become a dominant paradigm in machine learning. Our
method also provide novel views for offering knowledge

guidance in similar tasks across diverse categories.
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