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1. Background
1.1. Human Visual System
The Human Visual System (HVS) facilitates visual percep-
tion by transmitting information from specialized retinal
cell types through the optic nerve to the brain. This trans-
mission employs two distinct pathways. The parvocellular
pathway, originating from midget cells, delivers essential
color and pattern information to parvocellular layers, es-
sential for discerning fine visual details. The magnocellular
pathway, initiated by parasol cells, provides depth and mo-
tion cues to magnocellular layers [1], as shown in Figure 1
in the main manuscript.

Visual signals are first relayed to the lateral geniculate
body of the thalamus, serving as a critical sensory relay
station, before advancing to the primary visual cortex for
preliminary processing, including the visual attention [4].
Specifically, the visual attention mechanism within HVS
consists of two primary components: the first is a base-
line increase in neural activity that elevates neuron activ-
ity across specific visual areas, as shown in Figure 1 in the
main manuscript; the second component is gain modulation,
which aims to enhance the magnitude of neural responses.
The visual association cortex processes information relayed
from the visual cortex, engaging in sophisticated analysis
of high-level semantic content from visual images. Conse-
quently, this advanced processing capacity allows the hu-
man visual system to robustly identify and track objects
within complex and dynamic environments.

1.2. Spiking Neural Networks
Spiking Neural Networks, as bioinspired computational
frameworks, are inherently suited to handle the asyn-
chronous and sparse characteristics of event data [2, 3]. The
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most common neuron model is the Leaky Integrate-and-Fire
(LIF) model with iterative expression [6]. At each timestep
t, the neurons in the l-th layer integrate the postsynaptic cur-
rent cl[t] with previous membrane potential ul[t − 1], the
mathematic expression is illustrated in Equation (4):

ul[t] = (1− 1

τ
)ul[t− 1] + cl[t], (1)

where τ is the membrane time constant. τ > 1 as the
discrete step size is 1. The postsynaptic current cl[t] =
W l ∗ sl−1[t] is calculated as the product of weights W l and
spikes from the preceding layer sl−1[t], simulating synap-
tic functionality, with ∗ indicating either a fully connected
or convolutional synaptic operation.

Neurons produce spikes sl[t] via the Heaviside function
Θ when the membrane potential ul[t] surpasses the thresh-
old Vth, as depicted in Equation (5):

sl[t] = Θ(ul[t]− Vth) =

{
1, if ul[t] ≥ Vth

0, otherwise
. (2)

After the spike, the neuron updates the membrane potential
ul[t] according to the reset mechanism as shown in Equa-
tion (3):

ul[t] = ul[t]− Vths
l[t], (3)

where the Vth ∈ R is generally a global scalar that controls
the firing and reset process for the neurons in each layers.

2. Theory Analysis of NCM
We first recall the standard LIF and LIF with Initialization
from ANN (NCM), then we compare the graidents differ-
ence between LIF and the NCM.

Standard LIF Model The most common neuron model is
the Leaky Integrate-and-Fire (LIF) model with iterative ex-
pression. At each timestep t, the neurons in the l-th layer
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integrate the postsynaptic current cl[t] with the previous
membrane potential ul[t− 1], the mathematical expression
is illustrated in Equation (4):

ul[t] =β
(
ul[t− 1]− Vths

l[t− 1]
)
+ cl[t], (4)

sl[t] =Θ(ul[t]− Vth) =

{
1, if ul[t] ≥ Vth

0, otherwise
, (5)

where β· ≜ 1 − 1
τ ∈ (0, 1). The postsynaptic current

cl[t] = W l ∗ sl−1[t] is calculated as the product of weights
W l and spikes from the preceding layer sl−1[t], simulating
synaptic functionality, with ∗ indicating either a fully con-
nected or convolutional synaptic operation. Neurons pro-
duce spikes sl[t] via the Heaviside function Θ when the
membrane potential ul[t] surpasses the threshold Vth, as
depicted in Equation (5), where the Vth ∈ R is generally
a global scalar that controls the firing and reset process for
the neurons in each layers.

LIF with Initialization from ANN. To fully elevates
neuron activity across blurry areas, the threshold V ′

th is re-
designed according to the initial membrane potential as:

ul[t] =

{
Vinit , if t = 0

β
(
ul[t− 1]− V ′

th ⊙ sl[t− 1]
)
+ cl[t] , otherwise

,

(6)

sl[t] =Θ(ul[t]− V ′
th) =

{
1, if ul[t] ≥ V ′

th

0, otherwise
, (7)

V ′
th = 1− σ(Vinit), (8)

where σ is the Sigmoid function, which rescales the ini-
tial feature to the range of 0 to 1. Unlike the global scalar
threshold Vth ∈ R in vanilla LIF in Equation (4) and (5),
the threshold V ′

th ∈ RH×W×C has the same dimension with
the feature map Vinit, providing more fine-grained control
over the reset and firing processes of the neurons in the same
layer.

Error backpropagation for LIF: To better present the
derivation, we simplify the notation by using the subscript
t and omitting the layer index l. For example, we use Ut to
represent ul[t]. If there are errors in the expression ∂L

∂Ui
for

i = 1, · · · , T from backpropagation in the previous layer,
the error gradients with respect to Ut for the standard LIF

model are calculated as follows:

∂L
∂Ut

=
∂L
∂St

· ∂St

∂Ut
+

T∑
i=t+1

∂L
∂Si

· ∂Si

∂Ui

T−i∏
d=1

∂Ut+d

∂Ut+d−1
(9)

=
∂L
∂St

·Θ′(Ut − Vth) (10)

+
∂L

∂St+1
·Θ′(Ut+1 − Vth) · β (11)

+ · · · (12)

+
∂L
∂ST

·Θ′(UT − Vth) · β(T−t) (13)

Error backpropagation for Init-LIF: The gradient prop-
agation for initialization from the ANN is then expressed
as:

∂L
∂Ut

=
∂L
∂St

·Θ′(Ut − V ′
th) (14)

+
∂L

∂St+1
·Θ′(Ut+1 − V ′

th) · β (15)

+ · · · (16)

+
∂L
∂ST

·Θ′(UT − V ′
th) · β(T−t) (17)

Specifically, when the time step t = 1:

∂L
∂U1

=
∂L
∂S1

·Θ′(U1−V ′
th)+· · ·+ ∂L

∂ST
·Θ′(UT−V ′

th)·β(T−1).

(18)
The gradients are then backpropagated to the ANN feature
map (m = Vinit) as:

∂L
∂m

=
∂L
∂U1

· ∂U1

∂U0
· ∂U0

∂m
+

T∑
i=1

∂L
∂Si

· ∂Si

∂Vth′
· ∂Vth′

∂m
(19)

=
T∑

i=1

∂L
∂Si

·Θ′(Ui − V ′
th) ·

(
βi−1 − σ′(m)

)
, (20)

We can see that the error gradients backpropagated to the
ANN module contain all event information, as they include
all timestep membrane potential information, which is gen-
erated from the event inputs.

3. Datasets and Experiments
3.1. Datasets
We evaluate the BDHNet with GoPro, REBlur and MS-
RBD datasets with both synthetic and real-world scenarios.

GoPro: We evaluate the deblurring performance on Go-
Pro dataset [5], which is the benchmark dataset for the im-
age motion deblurring. It consists of 3214 pairs of blurry
and sharp images, with 2103 pairs for training and 1111
pairs for testing. The resolution of all images is 1280× 720



Figure 1. Qualitative comparisons under GoPro dataset. Best viewed on a screen and zoomed in.

Figure 2. Qualitative comparisons under GoPro dataset. Best viewed on a screen and zoomed in.

Figure 3. Qualitative comparisons under REBlur dataset. Best viewed on a screen and zoomed in.



Figure 4. Qualitative comparisons trained with GoPro without fine-tuning under REBlur dataset. Best viewed on a screen and zoomed in.

Figure 5. Qualitative comparisons trained with GoPro without fine-tuning in MS-RBD dataset. Best viewed on a screen and zoomed in.

Figure 6. Qualitative comparisons trained with GoPro without fine-tuning in MS-RBD dataset. Best viewed on a screen and zoomed in.



and the blurry images are produced by averaging several ad-
jacent high-speed sharp images. The event data is generated
through the ESIM simulator. In this work, the raw event
data is shaped into voxel-based representation for each im-
age following EIFNet and the timestep in V is set to b = 12.

REBlur: REBlur dataset [5], captured by DAVIS for
real event-based motion deblurring, comprises 1,389 image
pairs with 486 designated for training and 903 for testing. It
contains diverse linear and nonlinear indoor motions. Each
image has a resolution of 260×360, consisting of real-world
event data with the corresponding blurry and sharp images.

MS-RBD: MS-RBD dataset [7] is the multi-scale blurry
dataset captured in the real-world scenario. The dataset
contains 32 sequences of data with 22 indoor and 10 out-
door scenes. The resolution of all images is 288× 192 with
the corresponding events. We evaluate the deblurring per-
formance on MS-RBD with a focus on the generalization
ability in the real-world scenes, where the blur caused by
camera ego-motion and dynamic scenes.

3.2. Supplementary Comparisons
Figure 1 and Figure 2 are the comparison results in the Go-
Pro dataset. Figure 3 is the deblurring results in the RE-
Blur dataset. As certain studies release only the weights
trained on the GoPro dataset, we seek to ensure an impar-
tial evaluation of the algorithmic performance and assess
the generalization capabilities. To this end, we present the
visualization results of inference on the REBlur and MS-
RBD datasets, utilizing the GoPro-trained weights without
fine-tuning, as shown in Figure 4, Figure 5, and Figure 6.
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