DRaM-LHM: A Quaternion Framework for Iterative Camera Pose Estimation

Supplementary Material

7. Mathematical details

For detailed derivations and a comprehensive breakdown of
the equations, we refer the reader to the foundational work
by [9], Here, we present the complete formulation of the
Sorruo (ij; T, Y, z;u,v) as follows:
Sorrro (qij; Ty, 2u,v) =

q00° 2T + q11°2T + ga2° 2T + q33° T + qo0” Yy + q11>yy

+ qa2”yy + q33°yy — 4900901 = + 4400402 22

+ 2goog11 2T — 2goog11 Yy + 8qooqiz TY + 4gooq13 T2

— 2qo0922 T« + 2qooq22 ¥Y + 4900923 Yz — 2qo0gs3 TT

— 2400433 Y — 200 uT — 2qo0 vy + 4qo1° 22

— 8401903 2 + 4q01911 Y2z — 8G01G12 T2

— 4901922 Y7 — 8901923 22 + 4901933 Y2 + 4q01 v2

+ 4q02° 22 — 8402403 Yz + 4902411 T2 + 8qo2q12 Y2

+ 84¢02q13 22 — 4qo2q22 T2 — 4G02G33 Tz — 4qo2 U2

+ 4qos*zx + 4q03°yy — 8qosq11 &y + 8qosqi2 T

— 8qo3q12 Yy — 8qo3q13 Y= + 8qozq22 Y + 8qo3qes Tz

+ 4qo3 uy — 4qo3 vT + 4q11q13 2 — 2q11q22 T

—2q11922 yy — 4q11923 Y2z — 211933 2T + 2q11433 YY

— 2q11 uz + 2q11 vy + Agi2’zx + 4q12°yy

+ 8¢12¢13 Y2z + 8q124G23 Tz — 8q12933 Y — 4dqr2 uy

— dqia vz + 4q13° 22 — Aq13q22 12 — Aq13q33 2

— 4q13 uz + 4q22q23 Y2 + 2q22G33 TT — 2G22G33 YY

+ 2q20 uT — 222 VY + 4q23” 22 — 4q23q33 Y2

— 4qo3 vz + 2q33 ux + 2q33 VY + UL + VU .

and all 10 subdeterminants:

[z zy 2z
dyy. — det Ty Yy yz , dyzy — det

Tz Yz 22

[2z zx wuz]
dyy — det Yz yxr uy R

ZzZ 2T uz

[2y 2z wva]
dyy — det yy yz vy ,

2y 2z vz

[Trxr Ty vT 1
Aoy — det yr Yy vy s

zr zy vz

Ty Tz uT
Yy yz uy
zYy 2z uz

Irr TY ur
yr Yy uy
| 2z 2y wuz |

[(22 zz vz
dopy — det yz yxr vy

gy — det

zZz zZx vz

[Trr uxr v
gy — det yr uy vy

Zr uz vz

TrzZ ur v
yz uy vy
ZzZ Uz vz

L))
~— O~ O~~~

[2y wz vz]
dyuy — det yy uy vy , dayy — det

zZYy uz vz

(14
The last three subdeterminants, dgyy, dyyv, and dq,, are
not featured in the orthographic projection least square so-
lution referenced in Equation 10. However, their ratios rela-
tive to the self-covariance correspond to the third row of the

mean rotation error (rad)
0.4 1

DRaM-GN
DRaM-CL

#— EPnP

0.3 { =@ DRaM-LHM (Ours)

0.2
o
0.1 A N A—A
OIO_ T T T T T
0 3 6 9 12 15

Gaussian image noise 0

Figure 8. Comparative analysis of the mean rotation error 6 across
various iterative methods, using EPnP as a benchmark, with Gaus-
sian image noise o varied and the number of control points fixed
at 8.

optimized rotation matrix in noise-free conditions. As pre-
viously mentioned, this row is obtained through the cross
product of the first two rows.

8. Sanity check on different iterative method

There are several ways to refine the pose after initializa-
tion. Based on our sanity checks, LHM’s Orthogonal It-
erative method proves to be the most effective, outper-
forming direct numerical least squares optimization via the
Gauss-Newton method in minimizing both reprojection er-
ror (DRaM-GN) and collinearity error (DRaM-CL), even
when implemented with the Ceres solver [1]. The key rea-
son for this superiority lies in the presence of noise, when
noise is introduced, the gradient descent path in raw pixel
space or along its corresponding ray tends to deviate from
the true pose, making direct optimization less reliable.

9. DRaM-LHM algorithm

The algorithmic description of DRaM-LHM requires speci-
fying two key thresholds: a collinearity error threshold and
a maximum number of iterations. After initialization us-
ing DRaM, the camera poses are refined by minimizing the
collinearity error through orthogonal iterations.

Algorithm 1 DRaM-LHM: Solve PnP
Require: Number of points, n > 4

3D points X; € R3,i =1,...,n

2D projections w; = (z;,v;,1) " ,i=1,...,n

Vo {u}, > Initialize line-of-sight matrix
Maximum number of iterations, 7 ax

Collinearity error threshold, e

X, g+ 3" X, 4 > Compute centroids

n
i n i=1 Wi

Xi«X;—X, y<«u-—u > Centralize points
Xgy — Ugy
t() — |: X_Z o 0 :|

Ry + DRaM+BI({X; — X, u; — @} ;) Equation 10
X; +— RoX,; +tg, Vie {1,...,71}
€o « collinearity error(X;, V)
collinearity error
while step < Ti,ax A collinearity error > €11 do
Rit1,ti11 < Update(X,;, V) > Update using
Equation 12 and SVD
X+ Rij1 X + tyy1,
3D points
€41 < collinearity error(X;, V)
collinearity error
step < step + 1
end while
return (R, t)

> Compute initial

Vi e {1,..,n} > Update

> Compute new

10. Minimal solver evaluation in RANSAC
framework

Following the setup in section 4, we conducted experi-
ments using 30 random points, introducing varying levels
of outlier by randomly replacing valid correspondences. As
shown in Figure 9, non-minimal solvers (EPnP, DRaM)
closely match the accuracy of a minimal-solver (P3P)
within (LO)RANSAC. Similar trends were observed for in-
lier count and success rate. While DRaM-LHM is inher-
ently a non-minimal solver—requiring at least four non-
coplanar points to avoid numerical degeneracies—it incurs
negligible computational overhead for larger sample size,
making it well-suited for robust estimation under challeng-
ing conditions. We will discuss this aspect in the final ver-
sion, as it is a relevant application consideration.

11. Configuration settings in ORB-SLAM?2

We used the rgbd_tum.cc and stereo_euroc.cc executa-
bles to perform visual odometry on the TUM RGBD and
EuRoC MAV datasets, respectively. This involved calling
TrackRGBD and TrackStereo from the System class,
leveraging depth maps or stereo disparity to initialize each
frame. To extract 2D-3D correspondences and 6-DoF

mean rotation error (rad)

0.08 7 4~ p3p+EPNP &
=@— P3P+DRaM-LHM (Ours)

P3P
0.07 ~
0.06 1 A

A
0.05 1 ol v
A

0.041 &

5 10 15 20 25 30 35
Percentage of outliers %

Figure 9. Rotation error § comparison for P3P, EPnP, DRaM (with
(LO)RANSAC) under varying outlier ratios (5%-35%) at fixed
noise level o = 2.0.

poses, we implemented a custom function that processes
keyframes from ORB-SLAM?2’s visual odometry pipeline.

12. AUC computation for real data sequences

To evaluate pose estimation accuracy, we compute the Area
Under Curve (AUC) by measuring the fraction of frames
where both rotation and translation errors fall within prede-
fined thresholds. Given a set of cosine differences for rota-
tion and percentage translation errors, the method follows
these steps:

1. Convert rotation errors (in radian) to angular errors
(in degrees) using:

0 = cos ! (Bqq) X 1% (15)

2. Compute accuracy at multiple predefined thresholds,
where a frame is considered correct if:

0 < Omwesh and terror < Einresh (16)
The thresholds are defined as:
* Rotation error thresholds: [2°,4°,6°,8°,10°]
* Translation error thresholds (percentage of scene
scale): [1.25%, 3.75%, 5%, 10%)

3. Integrate the accuracy curve using the trapezoidal rule,
normalizing over the threshold range to obtain the final
AUC score:

1 Oamas
AUC = W/ accuracy(0)df (17)

Omin

This AUC metric provides a compact evaluation of pose
accuracy across varying error tolerances, enabling direct
comparison between methods.

13. Additional results on real-world data

Alongside Figure 7, we report the AUC across varying num-
bers of points for the EuRoC MAV MHO1 sequence.

Methods/Number of Points 10 20 30 40 50

SQPnP 0.5682 0.5730 0.5739 0.5742 0.5755
EPnP 0.5008 0.5190 0.5239 0.5301 0.5286
DRaM (8 iters) 0.4944 0.5414 0.5597 0.5634 0.5672
DRaM (10 iters) 0.4705 0.5545 0.5642 0.5703 0.5708

Table 3. AUC across varying numbers of 2D-3D pairs (10-50) for
three methods on Euroc MAV’s MHO1.

