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Supplementary Material

7. Mathematical details

For detailed derivations and a comprehensive breakdown of
the equations, we refer the reader to the foundational work
by [9], Here, we present the complete formulation of the
Sorruo (ij; T, Y, z;u,v) as follows:
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The last three subdeterminants, dgyy, dyyv, and dq,, are
not featured in the orthographic projection least square so-
lution referenced in Equation 10. However, their ratios rela-
tive to the self-covariance correspond to the third row of the
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Figure 8. Comparative analysis of the mean rotation error 6 across
various iterative methods, using EPnP as a benchmark, with Gaus-
sian image noise o varied and the number of control points fixed
at 8.

optimized rotation matrix in noise-free conditions. As pre-
viously mentioned, this row is obtained through the cross
product of the first two rows.

8. Sanity check on different iterative method

There are several ways to refine the pose after initializa-
tion. Based on our sanity checks, LHM’s Orthogonal It-
erative method proves to be the most effective, outper-
forming direct numerical least squares optimization via the
Gauss-Newton method in minimizing both reprojection er-
ror (DRaM-GN) and collinearity error (DRaM-CL), even
when implemented with the Ceres solver [1]. The key rea-
son for this superiority lies in the presence of noise, when
noise is introduced, the gradient descent path in raw pixel
space or along its corresponding ray tends to deviate from
the true pose, making direct optimization less reliable.

9. DRaM-LHM algorithm

The algorithmic description of DRaM-LHM requires speci-
fying two key thresholds: a collinearity error threshold and
a maximum number of iterations. After initialization us-
ing DRaM, the camera poses are refined by minimizing the
collinearity error through orthogonal iterations.



Algorithm 1 DRaM-LHM: Solve PnP
Require: Number of points, n > 4

3D points X; € R3,i =1,...,n

2D projections w; = (z;,v;,1) " ,i=1,...,n

Vo {u}, > Initialize line-of-sight matrix
Maximum number of iterations, 7 ax

Collinearity error threshold, e

X, g+ 3" X, 4 > Compute centroids

n
i n i=1 Wi

Xi«X;—X, y<«u-—u > Centralize points
Xgy — Ugy
t() — |: X_Z o 0 :|

Ry + DRaM+BI({X; — X, u; — @} ;) Equation 10
X; +— RoX,; +tg, Vie {1,...,71}
€o « collinearity error(X;, V)
collinearity error
while step < Ti,ax A collinearity error > €11 do
Rit1,ti11 < Update(X,;, V) > Update using
Equation 12 and SVD
X+ Rij1 X + tyy1,
3D points
€41 < collinearity error(X;, V)
collinearity error
step < step + 1
end while
return (R, t)

> Compute initial

Vi e {1,..,n} > Update

> Compute new

10. Minimal solver evaluation in RANSAC
framework

Following the setup in section 4, we conducted experi-
ments using 30 random points, introducing varying levels
of outlier by randomly replacing valid correspondences. As
shown in Figure 9, non-minimal solvers (EPnP, DRaM)
closely match the accuracy of a minimal-solver (P3P)
within (LO)RANSAC. Similar trends were observed for in-
lier count and success rate. While DRaM-LHM is inher-
ently a non-minimal solver—requiring at least four non-
coplanar points to avoid numerical degeneracies—it incurs
negligible computational overhead for larger sample size,
making it well-suited for robust estimation under challeng-
ing conditions. We will discuss this aspect in the final ver-
sion, as it is a relevant application consideration.

11. Configuration settings in ORB-SLAM?2

We used the rgbd_tum.cc and stereo_euroc.cc executa-
bles to perform visual odometry on the TUM RGBD and
EuRoC MAV datasets, respectively. This involved calling
TrackRGBD and TrackStereo from the System class,
leveraging depth maps or stereo disparity to initialize each
frame. To extract 2D-3D correspondences and 6-DoF
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Figure 9. Rotation error § comparison for P3P, EPnP, DRaM (with
(LO)RANSAC) under varying outlier ratios (5%-35%) at fixed
noise level o = 2.0.

poses, we implemented a custom function that processes
keyframes from ORB-SLAM?2’s visual odometry pipeline.

12. AUC computation for real data sequences

To evaluate pose estimation accuracy, we compute the Area
Under Curve (AUC) by measuring the fraction of frames
where both rotation and translation errors fall within prede-
fined thresholds. Given a set of cosine differences for rota-
tion and percentage translation errors, the method follows
these steps:

1. Convert rotation errors (in radian) to angular errors
(in degrees) using:

0 = cos ! (Bqq) X 1% (15)

2. Compute accuracy at multiple predefined thresholds,
where a frame is considered correct if:

0 < Omwesh  and  terror < Einresh (16)
The thresholds are defined as:
* Rotation error thresholds: [2°,4°,6°,8°,10°]
* Translation error thresholds (percentage of scene
scale): [1.25%, 3.75%, 5%, 10%)

3. Integrate the accuracy curve using the trapezoidal rule,
normalizing over the threshold range to obtain the final
AUC score:

1 Oamas
AUC = W/ accuracy(0)df  (17)

Omin



This AUC metric provides a compact evaluation of pose
accuracy across varying error tolerances, enabling direct
comparison between methods.

13. Additional results on real-world data

Alongside Figure 7, we report the AUC across varying num-
bers of points for the EuRoC MAV MHO1 sequence.

Methods/Number of Points 10 20 30 40 50

SQPnP 0.5682 0.5730 0.5739 0.5742 0.5755
EPnP 0.5008 0.5190 0.5239 0.5301 0.5286
DRaM (8 iters) 0.4944 0.5414 0.5597 0.5634 0.5672
DRaM (10 iters) 0.4705 0.5545 0.5642 0.5703 0.5708

Table 3. AUC across varying numbers of 2D-3D pairs (10-50) for
three methods on Euroc MAV’s MHO1.



