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7. Mathematical details
For detailed derivations and a comprehensive breakdown of
the equations, we refer the reader to the foundational work
by [9], Here, we present the complete formulation of the
SORT HO (qij ;x, y, z;u, v) as follows:

SORT HO (qij ;x, y, z;u, v) =
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+ 4q03 uy − 4q03 vx+ 4q11q13 xz − 2q11q22 xx

− 2q11q22 yy − 4q11q23 yz − 2q11q33 xx+ 2q11q33 yy

− 2q11 ux+ 2q11 vy + 4q12
2xx+ 4q12
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+ 8q12q13 yz + 8q12q23 xz − 8q12q33 xy − 4q12 uy

− 4q12 vx+ 4q13
2zz − 4q13q22 xz − 4q13q33 xz

− 4q13 uz + 4q22q23 yz + 2q22q33 xx− 2q22q33 yy
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− 4q23 vz + 2q33 ux+ 2q33 vy + uu+ vv .

and all 10 subdeterminants:

dxyz → det

 xx xy xz
xy yy yz
xz yz zz

 , dyzu → det

 xy xz ux
yy yz uy
zy zz uz

 ,

dzyu → det

 xz xx ux
yz yx uy
zz zx uz

 , dxyu → det

 xx xy ux
yx yy uy
zx zy uz

 ,

dyzv → det

 xy xz vx
yy yz vy
zy zz vz

 , dzxv → det

 xz xx vx
yz yx vy
zz zx vz

 ,

dxyv → det

 xx xy vx
yx yy vy
zx zy vz

 , dxuv → det

 xx ux vx
yx uy vy
zx uz vz

 ,

dyuv → det

 xy ux vx
yy uy vy
zy uz vz

 , dzyv → det

 xz ux vx
yz uy vy
zz uz vz

 .

(14)
The last three subdeterminants, dxuv , dyuv , and dzuv , are
not featured in the orthographic projection least square so-
lution referenced in Equation 10. However, their ratios rela-
tive to the self-covariance correspond to the third row of the

Figure 8. Comparative analysis of the mean rotation error θ across
various iterative methods, using EPnP as a benchmark, with Gaus-
sian image noise σ varied and the number of control points fixed
at 8.

optimized rotation matrix in noise-free conditions. As pre-
viously mentioned, this row is obtained through the cross
product of the first two rows.

8. Sanity check on different iterative method

There are several ways to refine the pose after initializa-
tion. Based on our sanity checks, LHM’s Orthogonal It-
erative method proves to be the most effective, outper-
forming direct numerical least squares optimization via the
Gauss-Newton method in minimizing both reprojection er-
ror (DRaM-GN) and collinearity error (DRaM-CL), even
when implemented with the Ceres solver [1]. The key rea-
son for this superiority lies in the presence of noise, when
noise is introduced, the gradient descent path in raw pixel
space or along its corresponding ray tends to deviate from
the true pose, making direct optimization less reliable.

9. DRaM-LHM algorithm

The algorithmic description of DRaM-LHM requires speci-
fying two key thresholds: a collinearity error threshold and
a maximum number of iterations. After initialization us-
ing DRaM, the camera poses are refined by minimizing the
collinearity error through orthogonal iterations.



Algorithm 1 DRaM-LHM: Solve PnP

Require: Number of points, n ≥ 4
3D points Xi ∈ R3, i = 1, ..., n
2D projections ui = (xi, yi, 1)

⊤, i = 1, ..., n

V← {ui}ni=1 ▷ Initialize line-of-sight matrix
Maximum number of iterations, Tmax
Collinearity error threshold, ϵ

X̄, ū← 1
n

∑n
i=1 Xi,

1
n

∑n
i=1 ui ▷ Compute centroids

Xi ← Xi − X̄, ui ← ui − ū ▷ Centralize points

t0 ←
[
X̄xy − ūxy

X̄z − 0

]
R0 ← DRaM+BI({Xi − X̄,ui − ū}ni=1) Equation 10
Xi ← R0Xi + t0, ∀i ∈ {1, ..., n}
ϵ0 ← collinearity error(Xi,V) ▷ Compute initial
collinearity error
while step < Tmax ∧ collinearity error > ϵt+1 do

Rt+1, tt+1 ← Update(Xi,V) ▷ Update using
Equation 12 and SVD

Xi ← Rt+1Xi + tt+1, ∀i ∈ {1, ..., n} ▷ Update
3D points

ϵt+1 ← collinearity error(Xi,V) ▷ Compute new
collinearity error

step← step + 1
end while
return (R, t)

10. Minimal solver evaluation in RANSAC
framework

Following the setup in section 4, we conducted experi-
ments using 30 random points, introducing varying levels
of outlier by randomly replacing valid correspondences. As
shown in Figure 9, non-minimal solvers (EPnP, DRaM)
closely match the accuracy of a minimal-solver (P3P)
within (LO)RANSAC. Similar trends were observed for in-
lier count and success rate. While DRaM-LHM is inher-
ently a non-minimal solver—requiring at least four non-
coplanar points to avoid numerical degeneracies—it incurs
negligible computational overhead for larger sample size,
making it well-suited for robust estimation under challeng-
ing conditions. We will discuss this aspect in the final ver-
sion, as it is a relevant application consideration.

11. Configuration settings in ORB-SLAM2
We used the rgbd tum.cc and stereo euroc.cc executa-
bles to perform visual odometry on the TUM RGBD and
EuRoC MAV datasets, respectively. This involved calling
TrackRGBD and TrackStereo from the System class,
leveraging depth maps or stereo disparity to initialize each
frame. To extract 2D-3D correspondences and 6-DoF

Figure 9. Rotation error θ comparison for P3P, EPnP, DRaM (with
(LO)RANSAC) under varying outlier ratios (5%–35%) at fixed
noise level σ = 2.0.

poses, we implemented a custom function that processes
keyframes from ORB-SLAM2’s visual odometry pipeline.

12. AUC computation for real data sequences

To evaluate pose estimation accuracy, we compute the Area
Under Curve (AUC) by measuring the fraction of frames
where both rotation and translation errors fall within prede-
fined thresholds. Given a set of cosine differences for rota-
tion and percentage translation errors, the method follows
these steps:

1. Convert rotation errors (in radian) to angular errors
(in degrees) using:

θ = cos−1(θrad)×
180

π
(15)

2. Compute accuracy at multiple predefined thresholds,
where a frame is considered correct if:

θ ≤ θthresh and terror ≤ tthresh (16)

The thresholds are defined as:
• Rotation error thresholds: [2◦, 4◦, 6◦, 8◦, 10◦]
• Translation error thresholds (percentage of scene

scale): [1.25%, 3.75%, 5%, 10%]
3. Integrate the accuracy curve using the trapezoidal rule,

normalizing over the threshold range to obtain the final
AUC score:

AUC =
1

θmax − θmin

∫ θmax

θmin

accuracy(θ)dθ (17)



This AUC metric provides a compact evaluation of pose
accuracy across varying error tolerances, enabling direct
comparison between methods.

13. Additional results on real-world data
Alongside Figure 7, we report the AUC across varying num-
bers of points for the EuRoC MAV MH01 sequence.

Methods/Number of Points 10 20 30 40 50

SQPnP 0.5682 0.5730 0.5739 0.5742 0.5755
EPnP 0.5008 0.5190 0.5239 0.5301 0.5286
DRaM (8 iters) 0.4944 0.5414 0.5597 0.5634 0.5672
DRaM (10 iters) 0.4705 0.5545 0.5642 0.5703 0.5708

Table 3. AUC across varying numbers of 2D-3D pairs (10–50) for
three methods on Euroc MAV’s MH01.


