Global Motion Corresponder for 3D Point-Based
Scene Interpolation under Large Motion

Supplementary Material

In this document, we include

* more details about the implementation,

¢ more details about the SI-MPED metric,

* more results on motion interpolation and extrapolation,

* more results on the application of sparse view refinement,
 and more results on the ablation study.

A. Implementation Details

The input positions and PCA-DINO for the MLPs are nor-
malized using scalars pre-calculated from the start-state
3DGS model. The position input is then scaled by a hy-
perparameter weight, selected from {0.1, 1.0} based on the
importance of the positional information. Correspondingly,
dropout is applied to the position input to avoid trivial lo-
cal minima, with a ratio of 0.1 or 0.2 depending on the
previously chosen scale. To mitigate the issue of getting
trapped in local minima, the Perturb-and-MAP strategy [19]
is applied to the total energy, where the perturbations are
sampled from a Gumbel distribution. The learning rate of
training the MLPs is set to 0.0005, using the Adam op-
timizer [13] with default parameters. For the RGB loss
during the joint refinement, L1 and LPIPS [32] losses are
combined with weights 1.0 and 0.1, respectively; gradients
from the MLPs are not used to update the 3DGS models.
Due to the large size of Gaussian sets, batches of Gaus-
sians are sampled during each iteration when searching for
the minimum energy between the two Gaussian sets. For
most scenes, the batch size is set to 20,000, and it can
be reduced accordingly if the total number of Gaussians is
smaller. The FAISS library [11] is used to perform efficient
nearest neighbor searches.

B. SI-MPED Metric

For each interpolation step, the Multiscale Potential En-
ergy Discrepancy (MPED) [27] is calculated between the
interpolated point cloud and the ground-truth point cloud
from the start and end states, respectively. The MPED is
computed by aggregating distances from the neighborhoods
comprising 0.1%, 0.5%, and 1% of the total points, sum-
ming these values to obtain the overall MEPD. Following
PAPR in Motion [20], the Scene Interpolation MPED (SI-
MPED) is defined as a weighted sum of the MEPD at each
interpolation step, where the weights are proportional to the
average distance movement of points compared to the total
movement from the start to the end states.

C. Motion Interpolation and Extrapolation

Qualitative results on motion interpolation and extrapola-
tion for global-motion scenes are presented in Figure 10.
Additionally, qualitative results on local-motion scenes [20]
are shown in Figure 11, and the quantitative interpolation
evaluations for these scenes are provided in Table 7. Qual-
itative interpolation results on two real-world scenes from
Dynamic Gaussian [17] are provided in Figure 9, in com-
parison with the Dynamic Gaussian [17] baseline.

D. Ablation Study

We find the following properties when removing one of the

key components of our method:

1. Removing DINO input can result in implausible in-
terpolation (Ball), wrong global motion interpolation
(Boat), or wrong local motion interpolation.

2. Removing position input can result in wrong global
matching (Ball and Car) or wrong local motion in-
terpolation (Butterfly).

3. Removing local isometry loss can result in noisy floaters
(Dolphin) or blurry rendering (Butterfly and
Microwave) during the interpolation.

4. Removing local isometry loss can result in noisy render-
ing (Ball and Microwave) during the interpolation or
suboptimal end status prediction (Butterfly).

E. Sparse View Refinement

In addition to motion interpolation and extrapolation, GMC
can also be used to improve reconstruction quality in sparse
capture scenarios. Specifically, only five or ten views are
available for sparse captures, and we consider two settings:
(1) the start state has dense views and the end state has
sparse views, and (2) both states have sparse views. When
the input views are sparse, the reconstructed 3DGS will
have bad geometry and thus will perform poorly in novel
view synthesis. While a single state might not have enough
views for good 3D reconstruction, we can borrow the infor-
mation from the other state so that it can refine the self ge-
ometry and thus improve the novel view synthesis. Specif-
ically, through the rendering loss Lrar (1, I ¢)in Eq. 9,
the sparse-view 3DGS can use the training views from the
other state, and thus improve itself.

Results. For the sparse-view setting, we set 3 = 5, be-
cause in this setting, the ground-truth training views are
more reliable than the “borrowed” information based on



Sparse + Dense

Synthetic Scenes

Real-world Scenes

Metric Method Ball Boat Butterfly Car Dolphin Knight Microwave Seagull | Box Shoe Tapeline | Avg
PSNR 4 3DGS [12] | 30.39 31.64 28.94 24.42 34.50 26.82 31.98 31.12 23.50 26.10 26.39 28.71
Ours 38.18 36.25 31.18 33.63 37.59 33.49 37.63 35.76 26.31 26.94 26.81 33.07
SSIM 1 3DGS [12] | 0.978 0.970 0.973 0.946 0.992 0.965 0.980 0.964 0.890  0.930 0.959 0.959
Ours 0.992  0.984 0.983 0.981 0.995 0.985 0.989 0.981 0.912  0.940 0.964 0.973
LPIPS | 3DGS [12] | 0.045 0.047 0.059 0.086 0.018 0.063 0.042 0.051 0.107  0.087 0.046 0.059
Ours 0.006 0.011 0.013 0.016 0.005 0.008 0.012 0.013 0.064  0.066 0.033 0.022

Table 5. Novel View Synthesis for Sparse-Dense View Setting. For the synthetic scenes, the start state has 100 dense training views,
while the end state has 10 sparse training views. For real-world scenes (Shoe, tapeline, and Box), the end state has 5 sparse training
views. The results are reported as the mean value of test views for each scene.
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Figure 8. Novel-View Synthesis in Sparse-View Setting. This
figure demonstrate novel-view syhnthesis results in sparse-view
setting. From top to bottom, the rows show results from vanilla
3DGS [12], 3DGS refined by our method, and the ground truth.
The first column displays the real-world Box scene, where the
start state has 100 dense training views and the end state has only
5 sparse views. The second column shows the synthetic Knight
scene, with the start state having 100 dense views and the end
state having 10 sparse views. The last two columns present the
Microwave scene, where both start and end states have 10 sparse
views, showing novel view synthesis for the start state (left) and
end state (right). The proposed method effectively transfers in-
formation between states, improving texture quality in the Box
and Microwave scenes, and enhancing geometry by remvinng
floaters in the Knight scene.

Gaussian matching. Otherwise, each scene has the same
setting as the dense-dense setting studied for interpolation
and extrapolation tasks. We showcase three examples of the
application in sparse-view refinement in Figure 8, and we
report quantitative results, average PSNR, SSIM [24], and
LPIPS [32] of novel-view synthesis of 200 views. Quan-
titative results on sparse-view refinement with the sparse-

Sparse + Sparse

Synthetic Scenes Real-world Scene

Car Microwave Box

Metrie Method start end start end ‘ start end ‘ Ave
PSNR 1 3DGS [12] | 23.54 2437 2625 31.94 | 23.80 23.48 25.56
Ours 29.07 2996 33.60 34.83 | 25.19 25.36 29.67
SSIM 1 3DGS [12] | 0.943 0946 0.962 0.980 | 0.900 0.890 0.937
Ours 0.965 0.967 0.983 0.985 | 0.915 0.907 0.953
LPIPS | 3DGS [12] | 0.097 0.086 0.079 0.042 | 0.105 0.107 0.086
Ours 0.041 0.040 0.028 0.021 | 0.069 0.075 0.046

Table 6. Novel View Synthesis in Sparse + Sparse View Setting.
For the scenes Car and Microwave, both states have 10 training
views; for Box, both states have 5 training views. The results are
reported as the mean value of test views for each scene.

sparse view setting are presented in Table 6, and results with
the sparse-dense view setting are shown in Table 5.

Both qualitative and quantitative results show that our
method significantly improves upon the vanilla 3DGS
trained on sparse views. When training views are few and
sparse, two significant issues arise: (1) the presence of
floaters, and (2) a lack of details in under-observed regions.
The qualitative results show that our method is able to re-
duce (1) and handle (2). Our method reduces floaters be-
cause they have a poor match in the other state, and thus,
when transformed and rendered, they can be removed by
the rendering loss. Our method improves details in under-
observed regions because the other state may have more in-
formation on appearance details, which can be borrowed to
enhance the current state.
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Figure 9. Additional Interpolation Results. The figure presents interpolation results using our method on the Bxoes and Football
scene from Dynamic Gaussian [17]. The five columns correspond to five timesteps: 0.00, 0.25, 0.50, 0.75, 1.00.

Synthetic Scenes Real-world Scenes
Metric Method ‘ Butterfly Crab Dolphin Giraffe Lego Bulldozer Lego Man Avg Stand Lamp Avg
4DGS [25] 130.98 131.34 107.55 166.66 229.14 136.82 15042 | 431.64 380.52 406.08
Deformable 3DGS [28] 569.21 179.67 365.49 412.67 254.60 645.14 404.46 - - -
SI-FID | Dynamic Gaussian [17] 328.69 129.52 165.78 215.83 197.68 330.94 228.07 | 302.40 248.49 275.45
PAPR in Motion [20] 90.89 73.86 112.92 174.73 103.34 151.89 117.94 | 203.56 265.08 234.32
Ours 87.13 65.24 112.34 169.65 110.37 131.01 112.62 | 165.36 181.22 173.29
4DGS [25] 22.94 12.99 1.81 5.72 37.60 11.06 15.35 97.71 88.11 9291
Deformable 3DGS [28] 45.84 29.34 5.96 2222 24.50 36.24 27.35 - - -
SI-EMD |  Dynamic Gaussian [17] 104.57 10.19 50.47 11.13 62.60 146.65 64.27 84.69 103.58 94.14
PAPR in Motion [20] 34.93 9.87 2.17 5.03 13.34 12.61 12.99 29.77 63.12 4645
Ours 32.59 13.26 2.78 5.40 9.52 14.23 12.96 17.21 56.92  37.07
4DGS [25] 140.40 127.8 30.71 50.61 500.84 89.47 156.64 | 620.66 769.12 694.89
Deformable 3DGS [28] 81.87 32.26 12.53 14.78 47.27 53.59 40.38 - - -
SI-MPED | Dynamic Gaussian [17] 143.99 44.60 79.09 24.26 260.85 136.67 11491 | 260.68 166.58 213.63
PAPR in Motion [20] 11.57 7.16 4.05 5.89 19.13 8.50 9.38 26.72 22.00 24.36
Ours 11.02 7.85 5.07 4.70 18.55 8.40 9.27 30.27 1895  24.61

Table 7. Scene Interpolation Evaluation on Local-Motion Scenes [20]. The table compares our method with the baseline methods on
scenes with local motion [20], where “-” represents failure of a method. Rendering quality is evaluated using Scene Interpolation FID (SI-
FID), while geometry quality is assessed using Scene Interpolation Earth Mover’s Distance (SI-EMD) and Scene Interpolation Multiscale
Potential Energy Discrepancy[27] (SI-MPED).
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Figure 10. Additional Interpolation and Extrapolation Results. The figure presents interpolation and extrapolation novel-view syn-
thesis results using our method on the global-motion dataset. From top to bottom, the scenes displayed are Dolphin, Butterfly,
Microwave, Car, Seagull, Boat, Knight, Ball, Box, tapeline, and Shoe. The top nine scenes are synthetic, and the bottom
three are real-world. The nine columns correspond to nine timesteps: {—0.20, —0.10, 0.00, 0.25, 0.50, 0.75, 1.00, 1.10.1.20}.
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Figure 11. Additional Interpolation and Extrapolation Results. The figure shows interpolation and extrapolation novel-view synthesis
results using our method on the PAPR in Motion dataset [20]. From top to bottom, the scenes displayed are Dolphin, Butterfly,
Giraffe, Crab, Lego Bulldozer, Lego Man, Lamp, and Stand.
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