Pretend Benign: A Stealthy Adversarial Attack by Exploiting Vulnerabilities
in Cooperative Perception

1. Results on Real Dataset V2V4Real

We added experiments on V2V4Real [11], a real-world co-
operative perception dataset. The Table | below shows that
PB outperforms other adversarial attack methods in terms
of attack effectiveness (AP) and also achieves higher suc-
cess rates (ASR) under defense methods. This demonstrates
that PB retains strong attack performance and stealthiness in
real-world scenarios.

No Defense ROBOSAC FLD
Method AP AP AP
LoUp.3 IoUys|IoUo.3 10Up.5 ASR LoUp.3 IoUp.5 ASR
No Attack 0.68 0.55 | 0.68 0.55 - 0.68  0.55 -

PGD 054 009 | 060 049 00| 060 049 0.0
C&W 055 012 | 060 049 00| 060 049 0.0
James Attack| 0.50 0.07 | 060 049 00| 060 049 0.0
PB(Ours) 024 015 | 024 015 098 031 022 0383

Table 1. Results on V2V4Real.

2. Pretend Benign as a White-box Attack

The proposed Pretend Benign (PB) follows the settings
in [2, 3, 6, 13], making it a white-box attack [5]. However,
this does not prevent PB from being effectively deployed in
real-world scenarios. In cooperative perception, if the per-
ception models of different agents are heterogeneous and
lack an alignment module, the entire cooperative perception
system becomes ineffective [8]. Conversely, if an alignment
module is trained, the scenario essentially becomes a white-
box setting.

Furthermore, to ensure robust perception performance
and facilitate practical deployment, all agents within the
same cooperative system should adopt identical perception
models. Given these considerations, white-box adversarial
attacks are already applicable in most cooperative percep-
tion environments, making black-box attacks [4] less criti-
cal in such settings.

3. Exploring the Black-box Transferability of
Pretend Benign

To address the remaining cases where black-box conditions
exist [4, 6], we investigate the black-box transferability of
PB across different cooperative perception systems. Specif-
ically, we conduct experiments where adversarial attack sig-

nals are generated under varying perception models and fu-
sion methods and then used to attack a heterogeneous victim
model. The results are presented in Table 2.

From Table 2, we observe that due to the heterogene-
ity between the attacker’s and the victim’s perception mod-
els, PB’s attack effectiveness without defense is generally
weaker than in the white-box setting. However, when the
victim model is SECOND [12] with Average fusion, PB still
achieves strong attack performance, demonstrating a certain
level of black-box transferability.

More importantly, PB maintains its stealth even under
black-box conditions, successfully bypassing state-of-the-
art defense methods such as ROBOSAC [3] and our im-
proved FLD. These results confirm that PB exhibits notable
black-box transferability while preserving its high stealthi-
ness.

4. Potential defense strategies

Possible defense strategies include: (1) adopting more se-
cure communication protocols to prevent attacks at the
source; (2) using trusted agents to assist the ego agent in
validating shared information in uncertain regions (AR and
IR).

5. Additional Visualization Results

To further illustrate the effectiveness of PB, we present ad-
ditional visual comparisons between PB and other attack
methods on OPV2V [10] and V2XSet [9], as shown in
Fig. 1 and Fig. 2.
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Table 2. PB’s Black-box Transferability Experiment Results on OPV2V.
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Figure 1. Visualization comparison of attack results between PB and other attack methods on OPV2V.
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Figure 2. Visualization comparison of attack results between PB and other attack methods on V2XSet.
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