A. Implementation Details for T2V and STIV

Given that we use spatial-temporal attention, we first pre-
train the T2I model using only an image dataset. Subse-
quently, we load the EMA weights from the T2I model, ex-
cluding the temporal attention. In our work, we use the per-
frame VAE, which is the same one used in the T2I model.
On top of that, we use a temporal patch of size 2 in the DiT
part for video models. We modify the T2I cubify weights
by inflating the 3D convolution weight in the temporal di-
mension. For video training data, we select one frame from
every three frames and add independent and identically dis-
tributed Gaussian noise to each frame. Following stan-
dard practice, we randomly replace text prompt with empty
string 10% during training. In our STIV setting, we also
independently randomly drop image condition 8% during
training. For both T2V and STIV models, the CFG scale
is set to 7.5. The training schedule follows the progressive
training recipe described in section 2.3.

B. Implementation Details of Text Encoders

We used our internal CLIP text encoder to encode text into
embeddings. Concretely, a text is first tokenized via a TS to-
kenizer. The tokenized text is mapped into embeddings via
an embedding lookup table and further encoded via 32 lay-
ers of transformer with casual attention. Each transformer
layer contains 20 attention heads. Each attention head has
64 hidden dimensions. The output text embedding has a
dimension of 1280.

C. Ablation Study on T2I Generation

Baseline Setup For our base model, we employed the
PixArt-a architecture [8], which builds on the DiT [43]
model with added cross-attention layers to integrate image
tokens with text embeddings. As pre-trained components,
we used the open-source sd-vae-ft-ema model* and Ope-
nAI CLIP L14 model’, both of which are widely adopted in
the community. We conduct our experiments using the XL
model configuration with a 2562 image size. The full base-
line model, which includes the VAE and CLIP text encoder,
has approximately 1.06 billion parameters. For noise gen-
eration and denoising, we used a diffusion-based approach
with Stable Diffusion’s default noise schedule. The training
was conducted with a batch size of 4,096 over 400k steps,
which corresponds to approximately 1.4 epochs on our in-
ternal text-to-image dataset.

Table 5 summarizes the results of our ablation study, fo-
cusing on the following aspects:

Stabilized Training Leveraging recent advancements in
LLM and diffusion model architectures, we integrated QK-

“https://huggingface.co/stabilityai/sd-vae-ft-ema
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m Baseline Win mTie = New Config Win

SYNTH. CAPTION 28.98% 32.78% 38.24%
INTERNAL CLIP 30.94% 26.04% 43.01%

DIFFUSION TO FLOW 25.92% 21.51% 52.57%

Figure 4. Human evaluation results on significant changes in T2I
ablation study Tab. 5.

Norm [27] to manage the activation scale within attention
layers. Additionally, we applied sandwich-norm [24] to
both the inputs and outputs of the attention layer and the
feedforward layer. Projected conditions, including timestep
embeddings, pooled CLIP text embeddings, and micro con-
dition embeddings, were normalized before being input to
AdaLLN. These normalization techniques enhanced train-
ing stability, allowing us to increase the learning rate from
1 x 107 to 2 x 10~*, and also improved quality.

Noising and Denoising Process Formulation We explored
optimized noising/denoising formulations by replacing the
diffusion process with a flow-based linear interpolant[41].
Additionally, we applied renormalization at each inference
step to counteract potential side effects from high classifier-
free guidance (CFG) values. Here, the norm of the predic-
tion with CFG was linearly scaled to match the conditional
prediction norm, as explained in Sec. 2.2.

Training Cost Optimization To reduce training costs, we
evaluated three strategies: (1) switching from the AdamW
optimizer to Adafactor, (2) applying MaskDiT training with
a 50% masking ratio, and (3) using a shared AdaLN mod-
ule across layers instead of unique instances per layer.
These changes reduced per-device HBM usage from ap-
proximately 28GB to 11GB, allowing us to train on vSe
TPUs instead of the more costly v5p TPUs. Notably, as
shown in Table 5, masked training may adversely affect
metrics such as FID and HPS. However, we found addi-
tional unmask finetuning for a short duration (e.g. 50k
steps) can fix the artifacts causing these score drops. How-
ever, this additional training phase was not included in the
final configuration, as further training on video generation
can address this issue as well.

Enhanced Pre-trained Models and Conditioning We
evaluated improvements from advanced pre-trained mod-
els and additional conditioning techniques. Specifically,
we upgraded from the OpenAl CLIP L14 to an internally
trained CLIP-bigG model [34] and from a 4-channel to an
8-channel VAE. We also introduced 2D RoPE to support
masked training and added micro-conditions, inspired by
SDXL [45], to mitigate cropping artifacts in elongated ob-



jects. Finally, including synthetic captions generated via
[33] in training data results in notable performance gains.

Human Evaluation of Model Changes To validate im-
provements observed in automated metrics, we conducted
human evaluations for key modifications, including the ad-
dition of synthetic captions, upgrade of CLIP model, and
transition from diffusion to flow matching based objective.
Human raters are asked to asses image fidelity, text-image
alignment, and visual appeal, and give 5 level preference
ratings for image pairs. Each pair is sent to 5 raters for
rating and the image pair will be considered tie of com-
bined voting is neutral. Results from Figure 4 demon-
strate clear alignment between automated metrics and hu-
man judgments. This justifies to use automatic evaluation
as development metrics to maintain generation quality and
prevent regressions leading to significant quality losses.

C.1. Video Data Engine

Data quality is pivotal for video generation models. How-
ever, curating large-scale, high-quality datasets remains
challenging due to issues like noisy captions, hallucina-
tions, and limited diversity in video content and dura-
tion. To address these concerns, we propose a Video Data
Engine (Fig. 5)—a comprehensive pipeline that improves
dataset quality and reduces hallucinations, ultimately en-
hancing model performance. More details can be found in
Sec. ?? in the appendix.

Our approach focuses on three key questions: (1) How

to preprocess raw videos for better consistency? (2) What
is the effect of data filtering on model performance? (3)
How can advanced video captioning reduce hallucinations
and improve outcomes? We use Panda-70M [9] as a work-
ing example and produce a curated subset, Panda-30M, via
our pipeline.
Video Pre-processing and Feature Extraction. We em-
ploy PySceneDetect’ to remove abrupt transitions and in-
consistent segments, yielding more coherent clips. We then
extract key features (e.g., motion and aesthetic scores) to
guide subsequent filtering.

Data Engine for Filtering Effective data filtering is crucial
for improving dataset quality and reducing hallucinations.
We develop an automated filtering infrastructure that sup-
ports efficient data selection, quality control, and continu-
ous improvement throughout the model’s development life-
cycle. For instance, we can sample high-quality videos with
predefined resolutions / motion scores for the fine-tuning
stage. This filtering system allows us to systematically re-
move low-quality videos and focus on data that enhances
model performance. From Panda-30M, we further apply
filtering based on motion score and aesthetic score to ob-
tain Panda-10M, named as a high-quality version of Panda-

Shttps://github.com/Breakthrough/PySceneDetect

30M. The results are summarized in Tab. 12: instead of pur-
suing data volume, higher-quality videos have the potential
to achieve more promising results.

Video Captioning Model High-quality video-text pairs
are essential for training text-to-video models. Exist-
ing datasets often suffer from noisy or irrelevant cap-
tions, limited in describing temporal dynamics. We ini-
tially attempted a frame-based captioning approach fol-
lowed by LLM summarization [3], but found that single-
frame captions fail to represent motion, and LLM sum-
marization can induce hallucinations. To improve caption
quality while balancing cost, we employ LLaVA-Hound-
7B [67]—a video LLM capable of producing more coherent
and motion-aware descriptions.

Caption Evaluation and Ablations To objectively assess
caption accuracy, we introduce DSG-Video(Fig. 6), a mod-
ule inspired by DSG [11], that detects hallucinated objects
by probing captions with LLM-generated questions and ver-
ifying object presence in sampled video frames using a
multimodal LLM. This yields two metrics, DSG-Video;
and DSG-Videog, reflecting hallucination at the object
and sentence levels, respectively. We compare two cap-
tioning strategies—frame-based plus LLM summarization
(FCapLLM) and direct video captioning (VCap)—on the
Panda-30M dataset. As shown in Tab. 11, VCap reduces
hallucinations and increases the diversity of described ob-
jects, leading to improved T2V model performance. These
results show that richer, more accurate video descriptions
can significantly enhance downstream generation quality.

D. Detailed Results for T2V and STIV
D.1. VBench and VBench-12V Evaluation Metrics

We follow the same as the evaluation protocol provided by
VBench [30].

D.1.1. Video Quality

Video Quality is divided into two aspects: Temporal Qual-
ity and Image Quality. Temporal Quality evaluates cross-
frame consistency, including (1) Subject Consistency, en-
suring that subjects maintain a consistent appearance across
frames; (2) Background Consistency, assessing stability in
the background using feature similarity; (3) Temporal Flick-
ering, measuring smooth transitions in both static and dy-
namic areas; (4) Motion Smoothness, evaluating the fluidity
and realism of motion; and (5) Dynamic Degree, analyz-
ing the presence of large-scale dynamics or motions. Image
Quality focuses on individual images and evaluates (1) Aes-
thetic Quality, considering artistic appeal and visual rich-
ness, and (2) Imaging Quality, measuring clarity, noise, and
other distortions.
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Caption | Total Object | DSG-Video;(|) DSG-Videos({) | MSRVTT FVD (]) VBench (1)
FCapLLM 1249 6.4 24.0 808.1 64.2
VCap 1911 53 15.0 770.9 65.6

Table 11. Compare different captions using XL T2V model. DSG-Video metrics are calculated from 100 random captions.
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Figure 5. An overview of our video data engine, including video pre-processing, filtering, and video captioning.

Caption

the containers.

A person is preparing a meal with rice, meat, and
vegetables. They are placing the food items in a

black rectangular container. Next to the container, —
there is a small insect in a plastic box, and a yellow

plastic box with a cat illustration, hinting at the

meal's intended recipient. Hands reach out to grab

Object Existence Questions Detected ?

Are there hands?

Is there a meal?

Is there rice?

Is there meat?

Are there vegetables?
Is there a container?
Is there an insect?

Is there a box?
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Figure 6. An overview of DSG-Video’s approach to detecting object hallucinations in captions: we use an LLM to generate questions and
another MLLM to validate the presence of the object across frames. If the MLLM fails to detect the object in all frames, the object is

classified as a hallucination.

Data MSRVTT VBench

FVD | Quality T | Semantic 1 | Total T
Panda-30M 770.9 80.4 73.6 65.6
Panda-10M 759.2 80.8 73.4 66.2

Table 12. Compare Panda-30M and Panda-10M (high-quality) us-
ing XL T2V model.

D.1.2. Video-Condition Consistency

Video-Condition Consistency ensures alignment with the in-
put prompt and is categorized into Semantics and Style, each
with finer-grained dimensions.

Semantics (1) Object Class: Measures the success of gen-
erating specific objects described in the text prompt. (2)
Multiple Objects: Evaluates the ability to compose multiple
objects from different classes in a single frame. (3) Human
Action: Assesses whether the generated video accurately
captures actions described in the prompt. (4) Color: En-
sures synthesized object colors align with the text descrip-
tion. (5) Spatial Relationship: Checks whether spatial rela-
tionships between objects align with the prompt. (6) Scene:
Evaluates consistency between generated scenes and the in-
tended description (e.g., “ocean” versus “river’”).

Style (1) Appearance Style: Measures consistency of styles
mentioned in the prompt, such as “oil painting” or “cyber-
punk” (2) Temporal Style: Assesses temporal continuity of

styles across frames, ensuring smooth transitions.

Overall Consistency We further evaluate Overall Consis-
tency using metrics that combine semantic and style align-
ment, reflecting both the accuracy and coherence of gener-
ated videos.

VBench-12V builds upon the VBench with three new
Video-Image Alignment metrics: Subject Consistency,
Background Consistency, and Camera Motion Control.
These additional metrics provide a more comprehensive
evaluation by focusing on how well the generated video
aligns with the input image and specified prompt instruc-
tions. Specifically, Subject Consistency evaluates the align-
ment between the subject in the input image and the gener-
ated video, ensuring coherence in character or object repre-
sentation. Background Consistency assesses the continuity
of the background scene between the input image and the
video, highlighting the model’s ability to maintain a con-
sistent environment. Camera Motion Control, under Video-
Text Alignment, examines the adherence to camera control
directions as described in the prompt, which is crucial for
generating realistic video sequences that respond to speci-
fied dynamic instructions.

D.2. Detailed Results on VBench and VBench-12V

We showcase the detailed version of the performance shown
in Tab. 13 and Tab. 14.



Model Subject Back. Temporal Motion Dynamic | Aesthetic | Imaging Object Multiple Human
Cons. Cons. Flickering | Smooth. Degree Quality Quality Class Objects Action
CogVideoX-5B [63] 96.2 96.5 98.7 96.9 80.0 62.0 62.9 85.2 62.1 99.4
CogVideoX-2B [63] 96.8 96.6 98.9 97.7 59.9 60.8 61.7 834 62.6 98.0
Allegro [71] 96.3 96.7 99.0 98.8 55.0 63.7 63.6 87.5 59.9 91.4
AnimateDiff-V2 [25] 95.3 97.7 98.8 97.8 40.8 67.2 70.1 90.9 36.9 92.6
OpenSora V1.2 [70] 96.8 97.6 99.5 98.5 424 56.9 63.3 82.2 51.8 91.2
T2V-Turbo [36] 96.3 97.0 97.5 97.3 49.2 63.0 72.5 94.0 54.7 95.2
VideoCrafter-2.0 [7] 96.9 98.2 98.4 97.7 42.5 63.1 67.2 92.6 40.7 95.0
LaVie-2 [59] 97.9 98.5 98.8 98.4 31.1 67.6 70.4 97.5 64.9 96.4
LaVIE [59] 914 97.5 98.3 96.4 49.7 54.9 61.9 91.8 333 96.8
ModelScope [58] 89.9 95.3 98.3 95.8 66.4 52.1 58.6 82.2 39.0 924
VideoCrafter [6] 86.2 92.9 97.6 91.8 89.7 44.4 57.2 87.3 25.9 93.0
CogVideo [29] 92.2 95.4 97.6 96.5 42.2 38.2 41.0 73.4 18.1 78.2
PIKA [44] 96.9 97.4 99.7 99.5 47.5 62.4 61.9 88.7 43.1 86.2
Gen-3 [52] 97.1 96.6 98.6 99.2 60.1 63.3 66.8 87.8 53.6 96.4
Gen-2 [51] 97.6 97.6 99.6 99.6 18.9 67.0 674 90.9 55.5 89.2
KLING [32] 98.3 97.6 99.3 99.4 46.9 61.2 65.6 87.2 68.1 93.4
EMUS3 [23] 95.3 97.7 98.6 98.9 79.3 59.6 62.6 86.2 44.6 77.7
XL 96.0 98.5 98.4 96.5 62.5 56.3 59.3 91.5 41.3 98.0
XXL 97.5 98.9 99.1 98.2 48.6 56.2 59.7 91.1 49.1 99.0
M-256 96.0 98.5 98.6 97.2 68.1 57.0 60.8 88.8 62.1 98.0
M-512 95.9 96.9 98.8 98.0 59.7 60.6 62.5 85.9 72.4 96.0
M-512-SFT 96.7 974 98.7 98.3 70.8 61.7 63.9 88.1 67.7 97.0
M-512-SFT+TUP 94.8 95.9 98.7 99.2 70.8 63.7 65.0 88.9 70.3 95.0
M-512-UnMSFT 94.3 96.9 98.8 96.7 77.8 61.4 68.6 90.0 72.3 97.0
M-512-UnMSFT+TUP 95.2 95.8 98.8 99.2 70.8 63.6 65.9 90.0 69.8 94.0
Model Color Spatial Scene App. Temp. Overall Quality Semantic Total Averaged
Rel. Style Style Cons. Score Score Score Scores
CogVideoX-5B [63] 82.8 66.4 532 24.9 254 27.6 82.8 77.0 81.6 70.0
CogVideoX-2B [63] 79.4 69.9 51.1 24.8 24.4 26.7 82.2 75.8 80.9 68.3
Allegro [71] 82.8 67.2 46.7 20.5 24.4 26.4 83.1 73.0 81.1 67.5
AnimateDiff-V2 [25] 87.5 34.6 50.2 224 26.0 27.0 82.9 69.8 80.3 64.7
OpenSora V1.2 [70] 90.1 68.6 42.4 24.0 24.5 26.9 814 73.4 79.8 66.0
T2V-Turbo [36] 89.9 38.7 55.6 244 25.5 282 82.6 74.8 81.0 67.4
VideoCrafter-2.0 [7] 92.9 35.9 553 25.1 25.8 28.2 82.2 73.4 80.4 66.0
LaVie-2 [59] 91.7 38.7 49.6 25.1 25.2 27.4 83.2 75.8 81.8 67.6
LaVIE [59] 86.4 34.1 527 23.6 25.9 26.4 78.8 70.3 77.1 63.8
ModelScope [58] 81.7 33.7 39.3 234 254 25.7 78.1 66.5 75.8 62.4
VideoCrafter [6] 78.8 36.7 434 21.6 254 252 81.6 722 79.7 62.3
CogVideo [29] 79.6 18.2 28.2 22.0 7.8 7.7 72.1 46.8 67.0 52.3
PIKA [44] 90.6 61.0 49.8 223 24.2 25.9 829 71.8 80.7 66.1
Gen-3 [52] 80.9 65.1 54.6 243 24.7 26.7 84.1 75.2 823 68.5
Gen-2 [51] 89.5 66.9 48.9 19.3 24.1 26.2 82.5 73.0 80.6 66.1
KLING [32] 89.9 73.0 50.9 19.6 242 26.4 83.4 75.7 81.9 68.8
EMUS3 [23] 83.3 68.7 37.1 20.9 23.3 24.8 84.1 68.4 81.0 66.7
XL 86.4 424 54.4 224 26.3 27.8 80.7 72.5 79.1 66.1
XXL 90.8 45.1 455 22.1 26.1 274 81.2 72.7 79.5 65.9
M-256 83.6 445 54.7 22.5 26.6 28.4 82.7 74.8 80.6 67.9
M-512 91.2 51.0 53.6 23.9 25.8 27.8 82.2 77.0 81.2 68.8
M-512-SFT 93.7 58.0 52.8 24.6 26.2 28.5 83.9 78.3 82.8 70.3
M-512-SFT+TUP 94.7 50.6 573 24.5 26.7 28.6 84.2 78.5 83.1 70.3
M-512-UnMSFT 92.0 59.8 53.1 24.8 26.7 28.8 83.7 79.5 82.9 71.2
M-512-UnMSFT+TUP 87.7 46.9 57.1 24.5 26.6 28.5 84.4 77.2 83.0 69.7

Table 13. Detailed Evaluation Results for Text-To-Video Generation Models.

E. Details of Model Initialization Ablations

To facilitate a fair comparison for different initialization
methods we estimate the FLOPs associated with spatial-
temporal computation in the transformer for various model
training steps (Tables 15 and 16). When controlling for
FLOPs we take into account, the compute used to pre-
train the intermediate models, the reduction in an effective
number of tokens due to masking in the relevant attention
blocks, the increased parameter count when temporal atten-
tion is included, and the increased number of tokens passed
to the model during high resolution training. For both the
high resolution and higher frame count experiments we at-

tebyto keep the compute budget across model initialization
ablations similar. Tables 17 and 18 show the VBench qual-
ity metrics for high resolution and high frame count XL
sized models respectively.

F. Study of T2V on Physics Commonsense
Alignment Benchmark

We evaluated our models on physics commonsense bench-
mark VideoPhy, which outperforms both open sourced and
close sourced models on the leaderboard, the results are
shown in Tab. 19.



Model Subject Background Temporal Motion Dynamic | Aesthetic
Consistency | Consistency Flickering Smoothness Degree Quality
DynamicCrafter-256 [60] 94.7 98.3 98.1 97.8 40.6 58.7
DynamicCrafter-512 [60] 93.8 96.6 95.6 96.8 69.7 60.9
Animate-Anything [13] 98.9 98.2 98.1 98.6 2.7 67.1
SVD [3] 95.5 96.6 98.1 98.1 52.4 60.2
SEINE-512 [10] 95.3 97.1 97.3 97.1 27.1 64.6
VideoCrafter-12V [7] 97.9 98.8 98.2 98.0 22.6 60.8
Consistent-12V [49] 95.3 98.3 97.6 974 18.6 59.0
12VGen-XL [68] 94.2 97.1 98.3 26.1 26.1 64.8
TI2V-M 95.4 98.9 97.2 98.1 32.1 59.0
TI2V-M-512 99.5 99.3 99.5 99.6 10.2 62.5
STIV-M-512 98.1 98.6 98.7 99.1 24.0 65.4
Model Imaging 12V 12V Camera 12V Final
Quality Subject Background Motion Quality Score
DynamicCrafter-256 [60] 62.3 97.1 97.6 20.9 80.2 88.4
DynamicCrafter-512 [60] 68.6 97.2 97.4 32.0 81.6 89.1
Animate-Anything [13] 72.1 98.8 98.6 13.1 81.2 89.8
SVD [3] 69.8 98.8 98.6 62.3 82.8 89.9
SEINE-512 [10] 71.4 97.2 96.9 21.0 80.6 88.4
VideoCrafter-12V [7] 71.7 91.2 91.3 33.6 81.3 85.1
Consistent-12V [49] 66.9 95.8 96.0 33.9 78.9 86.8
12VGen-XL [68] 69.1 96.5 96.8 18.5 81.2 88.5
TI2V-M 66.1 97.0 97.4 22.7 78.8 87.6
TI2V-M-512 71.5 99.2 97.3 13.2 82.1 90.1
STIV-M-512 71.0 98.8 97.5 15.1 81.9 89.8
Table 14. Detailed Evaluation Results for Text-Image-To-Video Generation Models.
Init. Method | Models Stage 1 | Stage 2 | Stage 3 | Stage 4 | Total
Scratch | T2V-512 5.93 5.93
T2V-256 | T2I-256, T2V-256, T2V-512 1.11 2.05 2.84 6.00
T2I-512 | T2I-256, T21-512, T2V-512 1.11 8.43 4.02 5.97
Both | T2I-256, T2V-256, T21-512, T2V-512 1.11 2.05 8.43 1.98 5.98
Table 15. A breakdown of FLOPs for training high resolution T2V models. Unit 10,
Init. Method | Models Stage 1 | Stage 2 | Stage 3 | Total
T2I T21-256, T2V-256-40 1.11 2.05 3.16
T2V (int.) T21-256, T2V-256-20, T2V-256-40 1.11 1.02 1.02 3.16
T2V (ext.) T21-256, T2V-256-20, T2V-256-40 1.11 1.02 1.02 3.16
T2V 2x (int.) | T2I-256, T2V-256-20 2x stride, T2V-256-40 1.11 1.02 1.02 3.16

Table 16. A breakdown of FLOPs for training high frame count T2V models. Unit: 10%!.

G. Study of Class-to-Video on UCF-101

UCF-101 is an action recognition dataset, which contains
101 classes over 9.5K training videos. Here we train STIV
from scratch and perform label-to-video (L2V) generation
with 16 frames and 1282 resolution. We follow TATS [21]
to adopt the Inception Score (IS) [53] and FVD for the eval-
uation’.

TFollowing our baselines (https://github.com/songweige/

TATS/issues/13), we apply C3D [57] pre-trained on UCF-101 for the

Tab. 20 shows that our L2V-XL achieves significant
improvements, leading to +12% IS and -22% FVD over
MAGVIT. This also highlights the effectiveness of our
model design for convention video generation. From the ab-
lation study over different modulations, only without spatial
mask makes a lower FVD but degrades IS, while all other
settings hurt the performance.

IS logits. For FVD, we adopt I3D [5] pre-trained on Kinetics-400 [31] to
calculate the video embeddings.
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Initial | Subject | Background | Temporal Motion Dynamic | Aesthetic | Imaging | Object
Method Cons. Cons. Flickering | Smoothness Degree Quality Quality Class
Scratch 93.1 97.1 97.9 97.3 61.4 58.6 58.6 87.0

T2V-256 91.9 97.1 98.0 97.5 58.6 59.4 59.7 91.2
T21-512 92.3 97.2 98.2 97.0 522 60.0 59.3 88.8
Both 924 97.3 98.3 97.4 539 60.7 60.6 88.2
Initial | Multiple Human Color Spatial Scene App. Temp. Overall
Method | Objects Action Relationship Style Style Cons.
Scratch 29.7 95.4 88.3 33.8 46.9 21.6 25.8 26.4
T2V-256 45.7 95.8 89.0 36.3 50.0 21.9 25.8 27.3
T21-512 474 96.4 87.9 37.0 49.1 225 26.2 27.8
Both 49.7 96.0 88.1 36.7 52.3 22.8 26.3 28.0

Table 17. Detailed VBench metrics of different model initialization methods for higher resolution T2V model training.

Initial | Subject | Background | Temporal Motion Dynamic | Aesthetic | Imaging | Object
Method Cons. Cons. Flickering | Smoothness Degree Quality Quality Class
T2I 93.2 98.1 98.7 95.2 57.8 54.2 58.2 84.6
T2V (int.) 91.7 97.7 97.7 96.8 64.7 54.7 59.2 86.9
T2V (ext.) 91.3 97.5 97.8 96.9 58.6 54.6 60.0 86.1
T2V 2x (int.) 91.0 97.3 97.2 97.0 70.3 54.1 59.4 85.8
Initial | Multiple Human Color Spatial Scene App. Temp. Overall
Method | Objects Action Relationship Style Style Cons.
T2I 30.8 922 85.0 29.9 452 21.1 25.0 26.0
T2V (int.) 25.5 95.4 85.3 28.6 414 21.2 253 26.6
T2V (ext.) 28.5 95.2 84.2 25.9 36.8 20.9 25.6 26.8
T2V 2x (int.) 29.3 94.0 87.7 28.6 44.2 20.9 25.7 26.7

Table 18. Detailed VBench metrics of different model initialization methods for higher frame count T2V model training.

Model Source | PC | SA | Avg. VBench-
OpenSora [70] Open | 35 | 21 | 28 Method 15T | FVDJ Quality 1
SVD [3] Open 34 | 37 35 CogVideo [29] 50.5 626 -
CogVideoX-2B [64] Open 39 | 40 39 TATS [21] 79.3 332 -
LaVIE [59] Open 36 | 45 41 MMVG [19] 73.7 328 -
VideoCrafter2 [7] Open 36 | 47 41 VideoFusion [40] 80.0 173 -
CogVideoX-5B [64] Open 41 | 57 49 MAGVIT [65] 83.6 159 -
Model Source | PC | SA | Avg. XL-128 934 | 124 69.9
Gen-2 [51] Closed | 31 26 29 - Spatial Mask 88.5 102 70.6
Pika [44] Closed | 33 | 25 29 + Temporal Mask 94.9 167 68.1
Lumiere-T2V [2] Closed | 31 | 35 33 + Temporal ScaleShiftGate | 78.9 141 69.1
Lumiere-T212V [2] Closed | 25 | 46 35 + Causal TemporalAttention | 86.9 106 70.3
Luma Dream Machine [39] | Closed | 30 | 53 | 41.5 ) ]

XL Our 36 57 47 Table 20. Performance of Class-to-Video Generation on UCF-101.
M-512 Our 43 | 59 51

Table 19. Performance of T2V models on VideoPhy [1].

H. Flexible Applications

Here, we demonstrate how to extend our STIV to various
applications, such as video prediction, frame interpolation,
multi-view generation, and long video generation.

Video Prediction We initialize from a STIV-XXL model
to train a text-video-to-video model conditioned on the
first four frames. As shown in Fig. 21a, the video-to-
video model (STIV-V2V) shows significantly lower FVD
scores compared to the text-to-video model (T2V) on
MSRVTT [61] test set and MovieGen Bench [46]. This
result indicates that video-to-video models can achieve su-
perior performance, which is promising for applications in



MSRVTT | MovieGen MSRVTT GSO [17]
Model FVD| | FVD, Model usetext | gy pypy  Mede PSNRT SSIM1 LPIPS |
T2V 536.2 3472 STIV-TUP | No 22 63 Zerol23++ 21200 0723 0.143
STIV-V2V | 1837 1863 STIV-TUP | Yes | 20 59 STIV-TR2V-XL | 21.643 0724 0.156

(a) Comparison of T2V and V2V.

autonomous driving and embodied Al where high fidelity
and consistency in generated video frames are crucial.

Frame Interpolation We propose STIV-TUP, a temporal
upsampler initialized from an STIV-XL model, and con-
tinue train conditioned on consecutive frames sampled by
stride of 2 with the text conditioning. Fig. 21b shows that
our STIV can also be used to do decent frame interpolation
conditioned on both text and image. We observe that us-
ing text conditions is slightly better in FID and FVD on the
MSRVTT test set. We also cascade the temporal upsam-
pler with our main model to explore whether it can boost
the main performance. As shown in Tab. 8 and Tab. 3, us-
ing a temporal upsampler on the top of the main models can
improve the quality performance while maintaining other
scores.

Multi-View Generation Multi-view generation is a spe-
cialized task focused on creating novel views from a given
input image. This task places demands on view consistency
and can greatly benefit from a well-pretrained video gen-
eration model. By adapting a video generation model for
multi-view generation, we can evaluate whether the pre-
training has effectively captured underlying 3D informa-
tion, which would enhance multi-view generation.

Here, we adopt the novel view camera definitions out-
lined in Zerol123++ [55], which specifies six novel view
cameras for each input image. The initial frame in our
TI2V model is set as the given image, and the next six
frames, representing novel views, are predicted as future
frames within TI2V. For training, we began with our TI2V-
XL checkpoint trained with a 256 resolution, fine-tuning
it for 110k steps on Objaverse [15]. For a fair compari-
son, we increased the image resolution to 320 during fine-
tuning, aligning with the settings used in Zero123++. Our
evaluation used objects from the Google Scanned Objects
dataset [17], where we compared the output multi-view im-
ages against ground-truth renderings. As shown in Fig. 21c,
despite only using temporal attention for cross-view con-
sistency, our approach achieves comparable performance to
Zero123++ which uses full attention to all the views. This
outcome validates the effectiveness of our spatiotemporal
attention in maintaining 3D consistency. A visual com-
parison between our approach and Zero123++ is shown in
Fig. 7.

(b) Performance of STIV-TUP.

(c) Multiview generation comparison.
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Figure 7. The visual comparison between our STIV-XL with
Zerol123++ [55] on GSO [17].



I. Detailed Results for Imaging Dropout

As mentioned in Section 3.2.2, after adding imaging
dropout. We observe this phenomenon happens when we
scale our model to 8B with 512 or higher resolutions, prob-
ably due to the model being more easily overfitting to fol-
low the first frame with a larger model capacity, and it be-
comes worse under the higher resolution. Specifically, we
showcase some examples to see the different between gen-
erated videos without image dropout and videos with im-
age dropout (STIV-M-512). We generate the videos condi-
tioned on the first frame and text prompt borrowed from
MovieGenBench [46] As shown in Fig. 8 to 10, using
image condition dropout in general achieves better perfor-
mance than the baseline in terms of motion quality.



TI2V-M-512 V.S. STIV-M-512

Prompt: A red panda taking a bite of a pizza.

Reference Image

Prompt: A rocket blasting off from the launch pad, accelerating rapidly into the sky.

Reference Image

Figure 8. Visualization of TI2V-M-512 V.S. STIV-M-512. (Given the same prompt, the figures in the top row are generated by TI2V-M-
512, while the figures in the bottom row are generated by STIV-M-512.)



TI2V-M-512 V.S. STIV-M-512

Prompt: A sports car accelerating rapidly on an open highway, the engine roaring.

Reference Image

Prompt: A glass of iced coffee condensing water on the outside, with droplets forming and sliding down the glass in slow
motion.

Reference Image

Figure 9. Visualization of TI2V-M-512 V.S. STIV-M-512. (Given the same prompt, the figures in the top row are generated by TI2V-M-
512, while the figures in the bottom row are generated by STIV-M-512.)



TI2V-M-512 V.S. STIV-M-512

Prompt: Cars and pedestrians move through a bustling downtown street lined with skyscrapers, their lights reflecting off
the windows of the towering buildings as day turns to dusk.

Reference Image

Prompt: Robots move efficiently through a futuristic laboratory, adjusting holographic displays and conducting
experiments, while scientists observe and interact with the high-tech equipment.

Reference Image

Figure 10. Visualization of TI2V-M-512 V.S. STIV-M-512. (Given the same prompt, the figures in the top row are generated by TI2V-M-
512, while the figures in the bottom row are generated by STIV-M-512.)



J. More Examples

We show more examples at the end of the Appendix us-
ing the text prompts and image as first frame condition bor-
rowed from MovieGenBench [46] and Sora [42].



Text-to-Video

Prompt: A pirate ship sailing through a storm with enormous waves crashing against the sides, its crew fighting against the
wind as lightning illuminates the scene.

Prompt: A samurai on horseback charging across a field of cherry blossoms, slicing petals in mid-air as they fall, leaving a
trail of pink in their path.




Text-to-Video

Prompt: A zoom-in on a clock face, focusing on the intricate movement of the hands and the ticking mechanism inside.

Prompt: Robots move efficiently through a futuristic laboratory, adjusting holographic displays and conducting
experiments, while scientists observe and interact with the high-tech equipment.

Prompt: A robotic arm wielding a glowing sword, battling a shadowy figure in a high-tech dojo, each strike creating sparks
that light up the space.

Prompt: A city skyline reflected in the water, but the reflection shows an alternate world with flying cars, towering robots,
and futuristic architecture.




Text-to-Video

Prompt: A dog dressed as a chef, expertly flipping pancakes in a kitchen.

Prompt: A snowboarder performing a dramatic backflip over a frozen lake, landing gracefully and leaving a trail of
sparkling ice dust in the air.




Text-to-Video

Prompt: A person dancing with their own shadow, which has come to life.

Prompt: A cyclist accelerating out of the saddle during a steep climb.




Text-Image-to-Video

Prompt: Reflections in the window of a train traveling through the Tokyo suburbs.

Reference Image

Prompt: The Glenfinnan Viaduct is a historic railway bridge in Scotland, UK, that crosses over the west highland line
between the towns of Mallaig and Fort William. It is a stunning sight as a steam train leaves the bridge...

Reference Image

Prompt: The camera follows behind a white vintage SUV with a black roof rack as it speeds up a steep dirt road
surrounded by pine trees on a steep mountain slope, dust kicks up from it’s tires, the sunlight shines on the SUV...

Reference Image

Prompt: Photorealistic closeup video of two pirate ships battling each other as they sail inside a cup of coffee.

Reference Image




Text-Image-to-Video

Prompt: A litter of golden retriever puppies playing in the snow. Their heads pop out of the snow, covered in.

Reference Image

Prompt: An adorable happy otter confidently stands on a surfboard wearing a yellow lifejacket, riding along turquoise
tropical waters near lush tropical islands, 3D digital render art style.

Reference Image

Prompt: A dog dressed as a chef, expertly flipping pancakes in a kitchen.

Reference Image
Prompt: A skeleton wearing a flower hat and sunglasses dances in the wild at sunset.

Reference Image




Text-Image-to-Video

Prompt: The video features a central spacecraft with a predominantly white and gray color scheme, accented with red and
black details. It has a sleek, angular design with multiple protruding elements that suggest advanced technology...

Reference Image

Prompt: The video begins with a dark space background, dotted with stars, and a central object that appears to be a
spacecraft with a glowing blue light at its core. The spacecraft is detailed with various components...

Reference Image

Prompt: Robots move efficiently through a futuristic laboratory, adjusting holographic displays and conducting
experiments, while scientists observe and interact with the high-tech equipment.

Reference Image
Prompt: The video presents a serene scene with a group of camels walking in a line across a desert landscape. The camels

are adorned with colorful saddles and are led by a person wearing a green garment. The background features a clear sky...

Reference Image




Text-Image-to-Video

Prompt: A crab made of different jewlery is walking on the beach. As it walks, it drops different jewelry pieces like
diamonds, pearls, etc.

Reference Image

Prompt: The video captures a single sea turtle with a patterned shell and flippers, swimming in a clear blue underwater
environment. The turtle moves gracefully over a bed of coral reefs, which exhibit a variety of colors...

Reference Image

Prompt: A mesmerizing video of a jellyfish moving through water, with its tentacles flowing gracefully.

Reference Image

Prompt: A video of a diver creating bubbles underwater, with bubbles rising and interacting with each other.

Reference Image




Text-Image-to-Video

Prompt: The individual in the video is dressed in a blue protective suit with a hood, a mask with a filter, and white gloves.
They are holding a spray bottle in one hand and a spray nozzle in the other...

y
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Reference Image

Prompt: The video captures a bustling city street scene during the evening. The sky is overcast, and the street is wet,
reflecting the lights from the vehicles and buildings. The buildings are tall with modern architecture...

Reference Image

Prompt: The video presents a series of images capturing the Colosseum from an aerial perspective during the evening. The
ancient amphitheater is illuminated by artificial lighting, which highlights its circular shape and the arches...

Reference Image

Prompt: The video features two dogs, one with a predominantly white coat and the other with a mix of black, brown, and
white fur. Both dogs are adorned with accessories; the white dog wears a red tie, while the other sports a purple bow tie...

Reference Image



