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A. Human Perception Flow

Driven by the insights of the neuroscientific studies of mo-
tion perception, the human perception of motion within
video can be systematically decomposed into two primary
dimensions at a coarse level: the global parsing of motion
fields and the capture of its finer details, as shown in Fig. 5.
Specifically, the global perception of video motion fields,
facilitates rapid evaluation of generated scenes plausibil-
ity by tracking macro-scale motion patterns, such as how
smooth motion requires high frame rates to suppress tem-
poral fragmentation (e.g., jitter artifacts). Simultaneously,
the fine-grained capture of motion in videos enables the de-
tection of physically implausible movement patterns that vi-
olate fundamental physical laws, such as acceleration pro-
files violating Newton’s laws or trajectories with positional
discontinuities. The proposed VMBench systematically de-
composes the two fundamental axes into granular percep-
tual criteria, thereby constructing a multi-dimension evalu-
ation framework to quantitatively assess the spatiotemporal
fidelity and motion coherence of generated videos.

B. Evaluation Dimension

B.1. Commonsense Adherence Score (CAS)

A prevalent issue in generated videos is the phenomenon
that contradicts human perception and physical laws. As
demonstrated in Fig. 6, generated videos frequently exhibit
motions that defy physical laws and violate everyday in-
tuitions and expectations, significantly compromising real-
ism. Our CAS aims to evaluate whether generated videos
align with human commonsense. As mentioned in the main
text, we develop a specialized model to assess the common-
sense quality of video content, categorizing it into five lev-
els: Bad, Poor, Fair, Good, and Perfect.

First, we collect a comprehensive dataset of 10k gen-
erated videos from a wide range of sources. This dataset
includes videos from legacy approaches as well as those
generated by popular models [2–4, 15, 16, 38, 46, 91, 97].
The videos in our dataset come from two main sources: ex-
isting web datasets [48] and videos that we generate using
these models. This approach ensures a diverse representa-
tion of video generation techniques and potential outcomes,
capturing a wide spectrum of quality levels and possible
commonsense violations. Such a comprehensive collection
is crucial for training a robust evaluation model capable
of assessing various aspects of video quality and realism.
Second, we establish perceptual ground truth using Vide-
oReward [48] to conduct systematic pairwise comparisons

among the 10k videos. For each video pair, VideoReward
determines which is preferable based on human perception
standards. We then calculate a win rate for each video, rep-
resenting its performance in all comparisons. These win
rates are used to rank the videos, which are subsequently
divided into five equal groups. Each group receives a la-
bel indicating its level of adherence to human commonsense
expectations, from lowest to highest. Third, we choose the
VideoMAEv2 [78] architecture for its temporal modeling
capabilities, which are crucial for assessing commonsense
adherence in video content. This model processes the in-
put video and outputs logits for each of the five quality
categories. We train VideoMAEv2 using the preference la-
bels derived from the previous step. The model is initial-
ized with a ViT-Giant [23] backbone pre-trained on large-
scale video datasets. We fine-tune this model on our la-
beled dataset using 8 NVIDIA H20 GPUs. Our training
process uses a batch size of 10, with input videos resized
to 224× 224pixels. Each video clip consists of 16 frames,
sampled at a rate of 4. We employ the AdamW optimizer
with a learning rate of 1e-3 and weight decay of 0.1. The
training schedule includes a 5-epoch warm-up period, fol-
lowed by a total of 35 epochs. To enhance model perfor-
mance, we implement layer-wise learning rate decay with a
factor of 0.9 and a drop path rate of 0.3.

To compute the final CAS, we use a Mean Opin-
ion Score (MOS) approach. The predicted probabilities
for each class are weighted by their corresponding qual-
ity coefficients. The mapping function G(i) converts the
category index to quality weights as follows: G(1) =
0(Bad), G(2) = 0.25(Poor), G(3) = 0.5(Fair), G(4) =
0.75(Good), and G(5) = 1(Perfect). The CAS is then cal-
culated using the formula provided in the main text:

CAS =

5∑
i=1

piG(i) (1)

where pi denotes the predicted probability for the i-th class.
The resulting score provides a comprehensive measure of
how well a generated video aligns with human expectations
and commonsense understanding of the world.

B.2. Motion Smoothness Score (MSS)

Generated videos often exhibit blur and artifacts during
object motion, particularly in areas with intricate details.
This issue is especially pronounced when depicting com-
plex movements that occur in the real world, as illustrated
in Fig. 7. These visual inconsistencies likely stem from the
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Figure 5. Our metrics framework for evaluating video motion, which is inspired by the mechanisms of human perception of motion in
videos. (a) Human perception of motion in videos primarily encompasses two dimensions: Comprehensive Analysis of Motion and Capture
of Motion Details. (b) Our proposed metrics framework for evaluating video motion. Specifically, the MSS and CAS correspond to the
human process of Comprehensive Analysis of Motion, while the OIS, PAS, and TCS correspond to the capture of motion details.

model’s difficulty in balancing the preservation of fine de-
tails with the representation of high-motion changes.

As mentioned in the main text, our MSS leverages Q-
Align’s [86] aesthetic score to detect artifacts. Here, we pro-
vide more details on how we quantify the frame-to-frame
visual quality degradation magnitude ∆Qt. The frame-to-
frame visual quality degradation magnitude ∆Qt is defined
as:

∆Qt = Q(ft−1)−Q(ft) (2)

where Q(ft) represents the Q-Align aesthetic score for
frame t. This formulation captures the change in visual
quality between consecutive frames, with positive values
indicating a decrease in quality. To determine the adap-
tive threshold τs(t), we conduct a statistical analysis of real
video segments from datasets such as [14] and [55]. We
analyze the relationship between motion amplitude and ac-
ceptable levels of quality degradation across diverse motion
patterns. The threshold τs(t) allows for a higher tolerance
of quality degradation in scenes with more intense motion.
By incorporating this adaptive thresholding mechanism, our
MSS effectively accounts for varying levels of acceptable
blur in different motion scenarios, providing a more percep-
tually aligned evaluation of motion smoothness in generated
videos.

The final MSS is computed as:

MSS = 1− 1

T

T∑
t=2

I(∆Qt > τs(t)) (3)

The MSS ranges from 0 to 1, where a score of 1 indicates
perfect motion smoothness (no frames with significant qual-

ity drops), and lower scores indicate a higher proportion of
frames with noticeable artifacts or blur.

B.3. Object Integrity Score (OIS)
The integrity of moving objects in the generated videos is a
crucial factor affecting the overall quality. Object integrity
refers to the degree to which objects in the video main-
tain their physical structure and appearance consistent with
real-world expectations. As illustrated in Figure 8, gener-
ated videos can sometimes exhibit abnormal distortions or
deformations of moving objects. These distortions violate
our perceptual expectations of normal object behavior and
movement. We employ the MMPose toolkit [20] to detect
key points of the primary subjects in the generated videos.
These key points are then used to estimate the subjects’
shapes in each frame. Our focus is on detecting perceptual
issues (e.g., distorted shapes) that are readily noticeable to
the human visual system.

For a comprehensive anatomical analysis, we consider
both length and angle variations of object components. Let
K = k1, k2, ..., kn be the set of key points detected in each
frame. Through statistical analysis of our datasets, we es-
tablish thresholds τL and τθ to detect changes in unnatural
shape in lengths and angles, respectively.

For length analysis, we calculate the Euclidean dis-
tance Li,j(t) between connected key points ki and kj
in each frame t. We then observe the variations in
these lengths across frames, identifying potential distortions
when changes exceed the threshold τL:

DL(i, j) =

T∑
t=2

I(|Li,j(t)− Li,j(t− 1)| > τL) (4)



(a)	violates	the	laws	of	physics	(score	7%)

(b)	naturalness	movement	(score	85%)

Figure 6. Visualization of Commonsense Adherence. (a) The ball exhibits perpetual rolling motion on the ground without external forces,
violating physical laws and contradicting human perception. (b) All objects demonstrate motion consistent with natural physical principles.

(a)	unsmooth	motion	(score	40%)

(b)	smooth	motion	(score	90%)

Figure 7. Visualization of Motion Smoothness. (a) Both subjects exhibit significant blur during walking, with the female’s facial features
particularly affected, resulting in a loss of fine details. (b) Both subjects demonstrate fluid motion, with clear visibility of bodily details.

where DL(i, j) denotes the distortion count for the com-
ponent between keypoints ki and kj , T represents the total
number of frames, and I(·) is the indicator function.

Similarly, for angle analysis, we compute the angles
θi,j,k(t) formed by adjacent key points in each frame. We
monitor these angles for abrupt changes that surpass the
threshold τθ:

Dθ(i, j, k) =

T∑
t=2

I(|θi,j,k(t)− θi,j,k(t− 1)| > τθ) (5)

These length and angle analyses contribute to the compound
anatomical deviation D(k)

f for each anatomical component
k in frame f . We establish tolerance thresholds τ (k) for

each anatomical component through statistical analysis of
natural motion samples from datasets such as [14, 55, 88].

The OIS is then computed as:

OIS =
1

F ·K

F∑
f=1

K∑
k=1

I
(
D(k)

f ≤ τ (k)
)

(6)

This formulation checks if the compound anatomical devi-
ation D(k)

f is within the acceptable threshold τ (k) for each
frame and anatomical component. The indicator function
returns 1 for each instance where the deviation is within
the threshold. We sum these values across all frames and
anatomical components and then normalize by dividing by
the total number of checks performed (F ·K).



(a)	distort	shape	during	motion	(score	20%)

(a)	integrity	object	shape	(score	80%)

Figure 8. Visualization of Object Integrity. (a) Both subjects exhibit varying degrees of bodily distortion, with their limbs becoming
difficult to discern due to severe warping. (b) Both subjects maintain normal anatomical structure throughout the sequence, displaying no
unnatural deformations.

(a)	slightly	camera	motion	(score	1%)

(b)	medium	camera	motion	(score	62%)

Figure 9. Visualization of Camera Motion. (a) The object and background remain relatively static, indicating subtle camera movement. (b)
The scene exhibits noticeable changes, demonstrating a panning or tracking camera movement.

B.4. Perceptible Amplitude Score (PAS)

Motion amplitude in videos stems from two sources: cam-
era motion, as illustrated in Fig. 9, and subject motion, as
demonstrated in Fig. 10. Our PAS focuses on the latter. Tra-
ditional methods like RAFT [74] can be affected by camera
motion when detecting subject movement. However, our
approach effectively isolates subject motion from camera
movement, enabling a more accurate perception of the pri-
mary subject’s motion regardless of camera dynamics.

Our method begins by employing GroundingDINO [49]
to detect the primary moving subject in the video, followed
by GroundedSAM [63] to generate precise masks for this

subject across frames. We then utilize CoTracker [36] to
track key points for the main subject using these masks.

The motion magnitude is computed based on the average
displacement of these key points. For each tracked key point
p at frame t, we calculate its displacement as:

D(pt) =
√
(xt − xt−1)2 + (yt − yt−1)2 (7)

The frame-level motion amplitude D̄t is then calculated as
the average displacement across all tracked key points for
active subjects in frame t:

D̄t =
1

Nt

Nt∑
i=1

D(pti) (8)



(a)	slightly	subject	motion	(score	5%)

(b)	high	subject	motion	(score	85%)

Figure 10. Visualization of Subject Motion. (a) The main subject exhibits only minor changes throughout the video, indicating limited
movement. (b) The subject completes a full range of actions, even moving out of frame, demonstrating a significant magnitude of move-
ment.

(a)	inconsistent	subject	appearance	(score	0%)

(b)	consistent	subject	appearance	(score	100%)

Figure 11. Visualization of Temporal Coherence. (a) The female disappears and reappears throughout the video, while the male exhibits
discontinuous behavior. (b) Both subjects maintain consistent presence and stability throughout the sequence, demonstrating superior
temporal continuity.

where Nt is the number of tracked key points in frame t. To
account for the context-dependent nature of human motion
perception, we derive a set of perceptual motion magnitude
thresholds τs for various scenarios s through statistical anal-
ysis of existing video datasets [14, 55]. These thresholds
serve as the foundation for computing a motion score for
each video. The Perceptible Amplitude Score (PAS) is then
computed as:

PAS =
1

T

T∑
t=1

min

(
D̄t

τs
, 1

)
(9)

where T is the total number of frames in the video, D̄t is the
frame-level motion amplitude, and τs is the perceptual mo-
tion threshold for scenario s. This method ensures that the
PAS accounts for both the magnitude of motion and its per-
ceptual significance in different contexts, providing a more
nuanced evaluation of motion in videos.

B.5. Temporal Coherence Score (TCS)

In generated video sequences, moving subjects often exhibit
phenomena of sudden disappearance or appearance, as il-
lustrated in Fig. 11. These temporal discontinuities signif-
icantly impact the perceived quality of motion. Stable tem-



poral coherence is crucial for achieving high-quality motion
in generated videos.

We employ GroundedSAM2 [62] for pixel-accurate in-
stance segmentation and tracking across frames, maintain-
ing persistent object IDs throughout the whole sequence.
For objects exhibiting discontinuous existence, we apply a
secondary verification phase using CoTracker [36] to track
dense key points on target objects and construct their mo-
tion trajectories.

We then analyze these motion trajectories to determine
whether any anomalous phenomena are present. Our ap-
proach mitigates false cases caused by legitimate object dis-
continuity through a rule-based filtering mechanism. These
rules account for common scenarios, including: 1) Objects
reappearing after occlusion or disappearing behind obsta-
cles. 2) Objects entering or exiting frame boundaries. 3)
Apparent size changes due to depth perception, such as ob-
jects appearing larger when moving closer or smaller when
moving farther away. Let N be the total number of object
instances in the video. For each object instance i, we define:
A: An indicator function that equals 1 if the object exhibits
discontinuous existence, and 0 otherwise. R: A function
that validates legitimate transitions based on our rule-based
filtering mechanism. It returns 1 if the transition is legiti-
mate (i.e., falls under one of the three scenarios mentioned
above), and 0 otherwise. The TCS is then computed as:

TCS = 1− 1

N

N∑
i=1

I(Ai ∧ ¬R) (10)

where I(·) is the indicator function that returns 1 if the con-
dition inside the parentheses is true, and 0 otherwise. The
term Ai ∧ ¬R identifies objects that exhibit discontinuous
existence (Ai = 1) and do not have a legitimate reason for
this discontinuity R = 0. TCS ranges from 0 to 1, where a
score of 1 indicates perfect temporal coherence (no anoma-
lous discontinuities), and lower scores indicate a higher pro-
portion of unjustified object vanishing or emerging events.
This formulation ensures that the TCS accounts for both the
presence of discontinuities and the legitimacy of these dis-
continuities based on our rule-based filtering, providing a
nuanced evaluation of temporal coherence in videos.

C. MMPG
C.1. Prompts Statistic
In this section, we conduct Motion Prompts Statistics (as
shown in Fig. 12) to emphasize VMBench’s focus on mo-
tion. In Table (a), we perform a statistical analysis to
demonstrate the superiority of our prompts compared to
previous works, focusing on the number of prompts (NP),
the number of motion prompts (NMP), the average length
of prompts (ALP), the types of motion subjects (TS),

place (TP), and actions (TA). We find that VMBench pro-
vides the most comprehensive coverage of action types and
the most detailed prompt descriptions, making it an effec-
tive benchmark for evaluating the dynamic motion gener-
ation capabilities of video generation models. Fig. 12 (b)
illustrates the distribution pattern of our motion prompts. It
is evident that our prompts, while covering six major motion
patterns, are particularly rich in content related to the most
common mechanical and biological motions found in every-
day life. This aligns with the characteristic of our prompts
being realistic and sensible descriptions. Fig. 12 (c), Fig. 12
(d), and Fig. 12(e) respectively demonstrate the richness
of subjects, places and actions within the prompts, high-
lighting the richness and variety of motion content. Fig. 12
(f) presents a well-distributed range of prompt lengths, and
Fig. 12 (g) shows the distribution of motion subjects, re-
flecting the diversity among subjects in our prompts. We
employ the dynamic evaluation method from DEVIL [45]
to assess the dynamic grade of our prompts, as shown in
Fig. 12 (h). The results indicate that our prompts exhibit a
high level of dynamism overall, which poses a challenge for
large models.

C.2. Human-LLM Reasoning Validation
To ensure that the prompts generated by the GPT-4o de-
scribe motion that exists in real life, we combine the efforts
of both LLMs and humans to evaluate the plausibility of
the prompts. We first utilize the strong reasoning capability
of DeepSeek R1 [21] to evaluate the realistic reasonable-
ness of motion descriptions logically (see Fig. 13), which
results in a quantified score. After filtering out prompts
with lower plausibility scores, we then recruit evaluators to
verify the real-world validity of the prompts through a sur-
vey (as shown in Fig. 14). After a rigorous review process,
we ultimately retain 1050 prompts that describe reasonably
realistic motion.

D. Implementation Details

D.1. Inference Details of Video Generation Models
To ensure a fair comparison, we utilize the best open-
source architectures and weights available for each model
and maintain the optimal hyperparameters (including video
resolution, sampling steps, scale, etc.) as demonstrated in
their respective demos to generate the corresponding videos
of approximately 5 seconds. Additionally, we record the
time cost of model inference (excluding model loading) for
reference. We list the inference details for each model as
follows:
HunyuanVideo [38] The preset video resolution is 624 ×
832 with a length of 129 frames. Using a 4-GPU parallel
inference setup, the generation time for a single video is
approximately 610 seconds.
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Benchmark NP NMP ALP TS TP TA

VBench 800 246 6.69 125 58 132

EvalCrafter 700 228 12.93 169 63 237

T2V-CompBench 1400 962 10.64 308 167 545

FETV 619 422 11.27 168 101 334

DEVIL 810 481 16.03 270 296 556

VMBench 1050 969 26.17 340 390 1216

Figure 12. Statistical analysis of motion prompts in VMBench. (a-h): Multi-perspective statistical analysis of prompts in VMBench. These
analyses demonstrate VMBench’s comprehensive evaluation scope, encompassing motion dynamics, information diversity, and real-world
commonsense adherence.

DeepSeek-R1 Reasoning

Is the motion described in “In the music studio, two teenagers raise their arms frontwards, their synchronized 
gesture adding energy to the room filled with sound equipment and sheet music” reasonable in reality? 

The described motion is realistic and reasonable in the context of a music studio. Synchronized arm-raising is a 
common expressive gesture in musical performances, rehearsals, or collaborative creative sessions, especially 
among energized teenagers. The studio environment (with sound equipment and sheet music) supports this sce
nario, as such spaces often involve dynamic interactions. Potential deductions (e.g., 5-10 points) might account 
for slight awkwardness if the space is cramped, but overall, the motion aligns well with youthful enthusiasm and p
erformance contexts. Score: 90/100

Figure 13. An Example of DeepSeek-R1 Reasoning. A case of evaluating the realistic reasonableness of a prompt using DeepSeek-R1.
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Figure 14. Manual Review of Prompt Validity in Real-World Scenarios. Some cases of manually reviewing the real-world validity of
prompts.
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Figure 15. Human Annotation Procedure. Three annotators independently evaluate each aspect, re-watching the video for each question.
Annotators are instructed to focus solely on the specific aspect being evaluated, disregarding other potential influences.

OpenSora [97] We use the Open-Sora v1.2 model version.
The preset video resolution is 720 × 1280 with a length of
102 frames and uses 30 sampling steps. Using a 4-GPU par-
allel inference setup, the generation time for a single video
is approximately 85 seconds.

CogVideoX [91] We use the CogVideoX-5B model ver-
sion. The preset video resolution is 480× 720 with a length
of 49 frames. Using a 2-GPU parallel inference setup, the
generation time for a single video is approximately 355 sec-
onds.

OpenSora-Plan [46] We use the v1.3.0 model version. The
preset video resolution is 352 × 640 with a length of 93
frames. Using a 4-GPU parallel inference setup, the gener-
ation time for a single video is approximately 408 seconds.

Mochi 1 [71] We execute the process with the decode type
set to “tiled full” and utilize a single GPU pipeline, setting
the sampling steps to 64. The preset video resolution is
480 × 848 with a length of 148 frames. The generation
time for a single video is approximately 725 seconds.

Wan2.1 [73] We use the T2V-14B model version. The pre-



A tourist joyfully splashes water in an outdoor swimming pool, 
their arms and legs moving energetically as they playfully splash around.
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Amidst the chatter and laughter in the picnic area, a customer steps 
away from their group, bends down, and swiftly slips into a pair of 

waterproof boots, ready to venture into the rain-soaked forest nearby.
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In the dim light of the castle, eight students work in pairs, their 
flashlights illuminating the walls and floors as they meticulously 

excavate, searching for clues about the past.

In the bustling street, two kids run towards a small dog,
bending down to carefully comb its fur, their hands moving swiftly.

Figure 16. Visualization of Generation Results of Mainstream Models on MMPG-set. Qualitative results on Mochi 1 [71], OpenSora [97],
CogVideoX [91], OpenSora-Plan [46], HunyuanVideo [38] and Wan2.1 [73] across six movement modes.

set video resolution is 1280×720 with a length of 81 frames.
Using 8 GPUs for parallel inference, the generation time for
a single video is approximately 912 seconds.

D.2. Human Annotation

We recruit three annotators and instruct them to score
each video based on five previously defined assessment as-
pects. These aspects are Commonsense Adherence, Motion
Smoothness, Object Integrity Score, Perceptible Amplitude,
and Temporal Coherence. For each video’s motion quality,
the annotators assign scores according to the rating crite-
ria outlined. Our annotation process employs a Likert scale

[54], with each dimension rated on five levels. Annotators
receive detailed descriptions for each dimension to guide
their scoring decisions. Our annotation interface is shown
in Fig. 15. To ensure a focused evaluation of each aspect,
we divide the overall task into five separate annotation pack-
ages. In each package, annotators watch the corresponding
videos and evaluate only one specific dimension. This ap-
proach allows annotators to concentrate on a single aspect
of video quality at a time, potentially improving the accu-
racy and consistency of their assessments. By structuring
the annotation process in this way, we aim to obtain more
reliable and targeted evaluations for each of the five dimen-



sions of video motion quality.

E. Qualitative Analysis

To identify where current T2V models exhibit limited capa-
bilities, we qualitatively demonstrate the generation results
of T2V models. We select 4 challenging prompts from our
benchmark, spanning 6 movement modes for video gen-
eration. Fig. 16 reveals four critical failure modes: Ob-
ject Persistence Paradox: Models frequently violate ob-
ject identity continuity during motion. Structural Degen-
eration: Dynamic motion induces catastrophic shape dis-
tortions. Temporal Artifacts: The generated motion ex-
hibits abrupt discontinuities masked by artificial blurring.
Newtonian Violations: Fundamental physics laws are sys-
tematically broken, particularly in energy conservation.

Upon closer examination of the videos generated by var-
ious models, we observe significant disparities in quality
and adherence to realistic motion. Mochi 1 [71], Open-
Sora [97], and OpenSora-Plan [46], for instance, produce
videos plagued by severe blurring and artifacts, substan-
tially degrading overall video quality. While CogVideoX
[91] and HunyuanVideo [38] demonstrate smoother motion,
they struggle with maintaining object integrity, often result-
ing in unnatural distortions of shape during movement se-
quences.

Notably, we find that Wan2.1 [73] exhibits the most
promising performance among the evaluated models. It
generates videos with smooth motion that adhere well to
basic physical principles, aligning closely with our funda-
mental visual expectations. Upon careful observation of
task-specific details such as object shapes and limb move-
ments, Wan2.1’s outputs appear more natural and consis-
tent. Moreover, it demonstrates a superior ability to accu-
rately represent the amplitude and scale of specific move-
ments as described in the prompts.

These observations underscore the ongoing challenges
in text-to-video generation, particularly in maintaining con-
sistency, physical plausibility, and natural motion across di-
verse scenarios. While progress is evident in some models,
there remains significant room for improvement in address-
ing these critical aspects of video generation.
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