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Figure S1. Streaming Perception Setting: Green points denote dy-
namic objects from the processed frame, whereas blue points rep-
resent the current frame at the time of prediction generated by the
algorithm.

A. Streaming Perception Setting

Based on previous works [1–8] in streaming perception,
our 4D streaming panoptic segmentation addresses a similar
challenge by explicitly considering the impact of algorith-
mic processing latency on the final prediction and the scene
at output time. As illustrated in Fig. S1, predictions from
existing methods are misaligned with the actual scene due
to this latency. This misalignment can lead to perception
inaccuracies, posing potential risks when robotic systems
operate in highly dynamic environments.

B. Forward Flow Iteration Proof

To find the flow between the current query point and history
position in geometric memory, we use the forward flow it-
eration. The iteration converges if Eq. ?? holds, then the
following equation holds

1 ≥ L ≥ |g(x0 +∆x)− g(x0 −∆x)|
|(x0 +∆x)− (x0 −∆x)|

=

∣∣∣∣f(x0 +∆x)− f(x0 −∆x)

(x0 +∆x)− (x0 −∆x)

∣∣∣∣ = |f ′(x0)|

For point x on a rigid object and the flow f(x, t) rep-
resenting velocity, the derivative |f ′(x)| can be expressed
as:

Table S1. Performance of different GPUs with different latency.

4DSegStreamer(M4F) PTv3 Mask4Former

sLSTQA40 0.681 0.526 0.501
sLSTQ3090 0.688 0.536 0.504
sLSTQA100 0.702 0.561 0.538

|f ′(x)| =
∣∣∣∣∂f(x, t)∂x

∣∣∣∣ = ∣∣∣∣∂ (v + ω × (x− xc))

∂x

∣∣∣∣
=

∣∣∣∣∂(ω × x)

∂x

∣∣∣∣ = ∣∣[ω]×∣∣ = |ω|

where xc is the rotation center of the rigid body, v is
the translational velocity, ω is angular velocity, [ω]× is the
cross-product matrix. The iteration converges when |ω| ≤
1. In real-world scenarios, most rigid objects exhibit low
angular velocity, allowing the iteration converges reliably.

While perfect convergence cannot be guaranteed in prac-
tice, our experiments show robust convergence in 97.4% of
scenes in the SemanticKITTI dataset.

C. Performance of different GPUs
Table S1 presents the performance of our method across dif-
ferent GPUs under streaming settings. Since the model’s
runtime speed and GPU processing capability significantly
impact the metric performance, the choice of hardware
plays a crucial role. Notably, the A40 and 3090 graphics
cards exhibit comparable performance due to their simi-
lar computational efficiency. In contrast, the A100 demon-
strates a substantial speed advantage over the 3090, leading
to a 1.4% improvement in our model’s performance on the
A100.
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