
Aligning Information Capacity Between Vision and Language via
Dense-to-Sparse Feature Distillation for Image-Text Matching

Supplementary Material

Dataset Images Texts Tokens per Text

Flickr30K original 29000 145000 13.41
Flickr30K generated 29000 29000 103.24

MS-COCO original 113287 566435 11.30
MS-COCO generated 113287 113287 104.34

Table 6. Comparison between the generated data with the original
datasets.

6. Additional Implementation Details

Details of Dense Text Generation. For dense text gen-
eration, we use LLaVa [23] to generate dense textual de-
scriptions. The hyperparameters for LLaVa are set as fol-
lows: Top-P = 0.9, temperature= 0.2, and max-new-
tokens= 500. We generate a dense text description for each
image in the MS-COCO and Flickr30K datasets, with each
dense text sentence corresponding to 1

5 of the sparse text
descriptions. As shown in Table 6, we compare the gen-
erated image-dense text dataset with the original dataset.
Note that, we only generate the dense texts for training
dataset.
Model settings. The dimensionality d of the joint embed-
ding space is 512 for all experiments. For the image en-
coder, we utilize different backbones to extract image fea-
tures and employ a feature aggregator to obtain a holistic
embedding. Specifically, we adopt GPO [3] as the fea-
ture aggregator. Since different backbones produce features
with varying dimensionalities, we introduce an MLP be-
fore GPO to standardize the feature dimensions. Similarly,
for the text encoder, we use different backbones along with
GPO for feature aggregation. In addition, we follow [3] by
using a higher image resolution.

For the text decoder, we adopt a Transformer-based ar-
chitecture with a depth of 4 and 4 attention heads per layer.
Additionally, we introduce 100 learnable tokens to predict
the context of sparse text embeddings. Notably, the im-
age encoder and text encoder maintain the same architecture
across both the pre-training and fine-tuning stages.
Training details. For dense text pretraining, the VSE
model is optimized using AdamW with a weight decay fac-
tor of 1e-4 The batch size is set to 96 for a Swin-based back-
bone and 128 for other architectures. The margin α of the
triplet loss is 0.2. The initial learning rate is set to 0.0005
for the first few epochs and is progressively reduced by a
factor of 10 at the 9th, 15th, 20th, and 25th epochs. Addi-

Algorithm 1: PyTorch Pseudocode of Finetune Stage

n: batch_size
d: dimensionality of the embeddings
m: number of the words in sentences
i_e: image embedding
st_e: sparse text embedding
st_w: sparse text word embedding
dt_e: dense text embedding

compute embeddings
i_e = image_encoder(I) #[n, d]
st_e, st_w = sparse_text_encoder(T) # [n

, d] [n,m,d]
st_e = decoder(st_w) + st_e

with torch.no_grad():
dt_e, _ = dense_text_encoder(T) # [n,

d]

normalize
i_e_norm = l2_normalize(i_e, dim=1) # [n,

d]
st_e_norm = l2_normalize(st_e, dim=1) # [

n,d]
dt_e_norm = l2_normalize(dt_e, dim=1) # [

n,d]

contrastive learning
sims = st_e_norm.mm(i_e_norm.t())
loss_align = triplet(sims)

d2s distill
loss_distill = distillation_loss(

dt_e_norm, st_e_norm)

loss = loss_align + loss_distill

tionally, a warm-up strategy is applied at the beginning of
training: during the first epoch, the triplet loss considers all
negative examples in the batch instead of selecting only the
hardest negative example. For sparse text fine-tuning, we
initialize the image and text encoders with weights from the
pretraining phase. The objective of fine-tuning is to recon-
struct the dense text embedding from the sparse text em-
bedding. The training strategy remains consistent with the
pretraining phase.

The pseudo-code for the fine-tuning phase is presented
in Algorithm 1.

