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 (a) Text-based KG-Augmented Reasoning Framework
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 What are the representative colors of the 
 team that the basketball player known as 
 the "Black Mamba" player for?
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Figure 1. (a) The limited information contained in text-based KGs
leads to inaccurate responses. (b) Leveraging MMKGs enables
reasoning with enriched multimodal information to produce the
correct answer.

A. Cross-Modal Reasoning Failures in Textual
KGs

Multimodal learning, by virtue of its capability to synergis-
tically integrate heterogeneous data modalities, establishes
a comprehensive knowledge acquisition paradigm that sig-
nificantly enhances reasoning robustness [3]. This princi-
ple extends to Multimodal Knowledge Graphs (MMKGs),
where the semantic symbiosis between visual and textual
modalities addresses the critical limitation of modal isola-
tion inherent in conventional text-based KGs. As empiri-
cally demonstrated in Figure 1, pure textual KGs often in-
duce hallucinated or incomplete responses due to their in-
ability to resolve visual-textual semantic ambiguities. For
instance, when queried about fine-grained visual attributes
(e.g., spatial relationships or object properties absent in
textual metadata), LLMs grounded solely on textual KG
triples frequently generate plausible but factually inconsis-
tent answers, as they lack access to cross-modal referential
grounding. In contrast, MMKGs bridge this gap through
bidirectional visual-textual entity linking, enabling LLMs
to retrieve and reason over fused evidence from both modal-
ities. Our qualitative analysis of the case in Figure 1 re-
veals that the multimodal reasoning path—leveraging both
image-derived entities and textual relationships—is essen-
tial for deriving logically coherent and factually accurate
conclusions.

Figure 2. Three example social media posts with labelled named
entities [1].

Type #Chains Mentions/Chain Boxes/Chain

people 59766 3.17 1.95
clothing 42380 1.76 1.44
body parts 12809 1.50 1.42
animals 5086 3.63 1.44
vehicles 5561 2.77 1.21
instruments 1827 2.85 1.61
scene 46919 2.03 0.62
other 82098 1.94 1.04

total 244035 2.10 1.13

Table 1. Coreference chain statistics of Flickr30K-Entity. The
number of mentions per chain indicates how salient an entity is.
The number of boxes per chain indicates how many distinct enti-
ties it refers to.

B. Case Studies on Manual Annotation Over-
heads

The development of robust entity extraction models typi-
cally hinges on large-scale annotated corpora, yet the gener-
alizability of these models remains intrinsically bounded by
the semantic scope and granularity of their training datasets.
Widely-adopted benchmarks such as Flickr30K-Entity [6]
exemplify this constraint: while serving as de facto stan-
dards for evaluating visual-linguistic entity grounding, their
construction necessitates labor-intensive manual annota-
tions at scale. As illustrated in Figure 2, even high-
quality annotations in such datasets often adopt a minimalist
tagging paradigm—identifying only coarse-grained entities
while neglecting fine-grained attributes and contextual re-
lationships. This sparsity of semantic enrichment directly
propagates to trained models, which consequently fail to
capture the compositional semantics necessary for complex



Figure 3. An example from the ScienceQA benchmark [5], illus-
trating multimodal question-answering scenarios that necessitate
joint reasoning over textual prompts and visual evidence.

reasoning scenarios.

C. Case Studies on Visual Specificity Deficits in
VLM-Generated Captions

As exemplified in Figure 3, vision-language models like
BLIP-2 [4] tend to produce oversimplified textual descrip-
tions that critically lack actionable visual-semantic signals.
The VLM-generated caption (”A map of the united states
with the location of the united states”) merely identifies
coarse-grained scene semantics, failing to capture object-
level attributes (color coding of regions), spatial relation-
ships (border adjacency between Arizona and Mexico) and
compositional context (compass orientation in lower-right
corner). In contrast, human annotations (”This is a map of
the United States. The main part of the country is shown in
green, with several states labeled. Arizona is in the south-
western part of the US, bordering Mexico. Oklahoma is in
the central - southern region. Louisiana is located along the
Gulf of Mexico in the southeastern part. West Virginia is in
the eastern part of the country. There’s also a compass in
the bottom - right corner to show directions.”) demonstrate
essential characteristics for multimodal reasoning.

D. Retrieval Strategy in MMKG Construction
We adopt retrieval strategies based on the framework pro-
vided by LightRAG [2], which supports multiple modes:
• local: focuses on context-dependent information;
• global: utilizes global knowledge;
• hybrid: combines local and global retrieval methods;
• naive: performs basic search without advanced tech-

niques;
• mix: integrates knowledge graph and vector retrieval;
In our implementation, we rely on the hybrid retrieval
mode, which balances the precision of local cues with the
breadth of global knowledge. This strategy improves the
relevance and completeness of retrieved information, which
is crucial for high-quality MMKG construction.

Algorithm 1 MMKG Generation

Require: Ŝ (refined description), T (external knowledge,
optional)

Ensure: G = (E ,R) (knowledge graph)
1: T ← Ŝ ⊕ T ▷ Concatenate Ŝ and T
2: G ← LightRAG(T ) ▷ Generate graph via LightRAG
3: (E ,R)← fERE(T ) ▷ Extract entities and relations
4: return G = {(h, r, t) | h, t ∈ E , r ∈ R}

LightRAG is an excellent project that effectively sup-
ports automatic MMKG construction, and its retrieval de-
sign plays a central role in our framework. Specifically,
LightRAG introduces keyword-guided text chunking to ex-
pand the retrievable context. By leveraging both high-level
and low-level keywords in combination with chunk-level
vector retrieval, it enables more comprehensive knowledge
access. In addition, the choice of the retrieval model is also
important. Larger LLMs have slower retrieval speeds but
better performance. In this experiment, we used Qwen2.5-
7B for retrieval. We also tested the retrieval performance
of 32B and 72B models, which showed a 1%-5% improve-
ment in performance, but it also significantly increased the
graph construction time. Therefore, we finally adopted a
lightweight retrieval model. The details of the entire Ligh-
tRAG are shown in Algorithm 1.

E. Selection of Sensitivity Threshold τ

We select the sensitivity threshold τ empirically based on
performance on the validation set. In practice, τ can be ap-
proximately determined by observing the token length dis-
tribution of captions: datasets with richer visual content and
longer captions tend to benefit from a lower τ , while simpler
datasets can tolerate a higher τ . This provides a practical
way to adjust τ without extensive tuning.

In addition, we notice a key pattern when analyzing the
relevance scores across windows. Around certain values
of τ , the scores tend to cluster tightly on both sides of the
threshold. As a result, even a small change in τ near these
points can lead to a large change in the number of tokens
being pruned. This indicates that the pruning process is es-
pecially sensitive around those points, and adjusting τ even
slightly may have a big impact on the final token budget.

F. Construction Cost and Scalability
Construction cost is a complex issue, which we analyze
from the perspectives of time and hardware requirements.
Time-wise, the main components are CoE and LightRAG.
While using APIs can significantly speed up the process, of-
fline deployment and inference are also feasible. For exam-
ple, generating descriptions with Qwen2-VL-7B achieves
around 60 tokens per second, processing one image ev-



ery 4 seconds. Thus, processing 1k images takes approx-
imately 1.21 hours. Constructing a KG with Qwen2.5-7B
yields about 196k tokens per hour, leading to a total of
1.33 hours for 1k images. The intermediate pruning step,
accelerated by CLIP’s fast processing speed, is negligible.
Overall, the cost is much lower than manual annotation or
fine-tuning LLMs, making the method applicable to large-
scale datasets. For resource-constrained users, deploying a
lightweight VLM with CoE is comparable to or even more
efficient than deploying a powerful VLM, further demon-
strating the scalability of our approach.

G. Discussion on VLM Usage and Design Flex-
ibility

Our observations on the number and type of VLMs used
in CoE are consistent with the original conclusions drawn
in the CoE paper [7]. Regardless of the specific VLM ar-
chitecture, increasing the number of models N consistently
improves performance up to a saturation point, after which
further scaling yields diminishing returns. Moreover, we
find that convergence is achieved more quickly when using
lower softmax temperatures or simpler datasets. These fac-
tors reduce the ambiguity in model disagreement, allowing
consensus to form more rapidly among the ensemble.

Interestingly, our results also show that using a sin-
gle, strong VLM can achieve performance comparable to
a cascade of smaller, lightweight models. This suggests
a practical trade-off between model strength and ensemble
size—while ensembling helps in reaching consensus across
diverse weak learners, a single high-capacity model may
suffice in many scenarios, especially when computational
resources are limited.

In the original CoE method, the outputs from all VLM
experts are first aggregated together, and then a selection
process determines which expert descriptions to use. To
save time in constructing the MMKGs with LLMs, we in-
stead adopted a sequential strategy where the output of one
expert is used as the prompt input for the next. We also
evaluated the original aggregation and selection strategy on
a smaller-scale dataset and found it to perform well, some-
times even surpassing the sequential approach. This con-
firms that CoE’s original design of aggregating all experts’
outputs before selecting which descriptions to use is effec-
tive and remains a strong baseline. However, correspond-
ingly, using LLMs to construct MMKGs based on these ag-
gregated descriptions requires significantly more time.

Additionally, while we apply pruning only at the final de-
scription step, pruning during intermediate steps may also
yield good results depending on the dataset and task. There
is no fixed rule for when or how to apply pruning, and our
framework is designed to be flexible enough to accommo-
date different strategies. We emphasize that both our CoE
framework and the SV step are intended to be adaptable, al-

lowing users to experiment freely and select the approach
that best suits their needs.

There are various VLMs that can be used for pruning.
Among them, we recommend CLIP due to its fast infer-
ence speed and pruning performance comparable to other
VLMs. Given its efficiency and effectiveness, CLIP serves
as a practical choice for pruning in many scenarios.
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