Blind2Sound: Self-Supervised Image Denoising without Residual Noise
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A. Calculation Details on Adaptive Re-Visible Loss
A.1. Model Formation

Given the noise-corrupted observation y € R™*¢, where n denotes the number of pixels per channel and ¢ is the number
of channels, we aim to learn the latent clean image * € R™*¢ directly from a single noisy image. Here, we consider the
Poisson-Gaussian noise [2] inherent to real-world imaging sensors, then the corruption process becomes:

y=aP + N, 9]

where P ~ Poisson(z/a) is the signal-dependent Poisson noise due to the photon counting, N ~ A (0, o?) is the Gaussian
noise accounts for the signal-independent errors such as electric and thermal noise. Note that « is a scaling factor that depends
on the quantum efficiency and analog gain. For simplicity, the Poisson noise is approximated as signal-dependent Gaussian
noise [3], and the final corruption can be reformulated as:

y =+ N(0,ax + %), )

We would like to extend the re-visible transition to sense noise and achieve personalized noise removal while retaining
lossless denoising. Meanwhile, the auxiliary branch used for noise estimation should be removed during inference. To this
aim, we reconsider the re-visible scheme from Bayesian reasoning. First, we model p(2z1|€2,) as a multivariate Gaussian
which represents that the latent clean image 2, is generated from the masked noisy volume €2, as follows:

z1 ~ N(z1|pm. Em), 3)

where N (-| b, Xm ) denotes the multivariate Gaussian distribution with mean g, and variance X,,.

For the masked branch, Eq. (2) incorporates extra noise knowledge into the explicit corruption model, provided as the
likelihood p(y|z1) given a clean value. Therefore, the marginal likelihood of the noisy training data can be constructed via
the distribution of unobserved clean data z1:

p(n) = / p(yl1)p(z1 |y dz @

As illustrated in Eq. (4), when only noisy training data y are available, a known noise model are able to explicitly predict
the masked prior p(z1/€2,). Specifically, for an approximate Gaussian noise model, the covariance of two mutually indepen-
dent Gaussian convolutions is simply the sum of the components [1]. Hence, the marginal likelihood p(y1) is calculated in
closed form, allowing to obtain the distribution of z; by maximizing Eq. (4). According to Egs. (2) and (3) as well as the
above analysis, the mean and variance of y; becomes:

y1 ~ N1 pm, Zm + diag(cq pm) + o11). )
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For the visible branch, we construct p(zz|y) as the generation of the latent clean image zo from the raw noise image y,
which then becomes:
z2 NN(ZZM"‘QME’U)) (6)

where the mean 1., and variance 3, are directly generated from the raw noise image y without gradient update. The marginal
likelihood for the visible branch via the distribution of unobserved clean data z5 is then formulated as:

p(ys) = [ plylz2)plzaly)dza ™)
Similar to Eq. (5), the mean and variance of y2 becomes:

Y2 ~ N(y2|po, By + diag(azpry) + 021). ®)

We now have the marginal likelihood p(y1) for blind branch and p(y=) for visible branch. Moreover, the mean and
variance of zo are not involved in backpropagation because of identity mapping. Since only the blind distribution p(z1|€2,)
via maximizing Eq. (4) has limited performance, we incorporate the errors of the visible branch p(zz|y) into the mask
gradient. Two-branch decorrelation enhances visible denoising without suppression from masked results. Hence, we model
y1 and yo as i.i.d., and apply Gaussian mixture to boost their representation. Combining Eqs. (5) and (8), the following
enhanced target distribution y is obtained while retaining the independence of two branches:

2
i=1

where 7; is a hyper-parameter for the degree of re-visible. Besides, 0 < m; < 1 and 7m; + w2 = 1. Set the blind factor m; to
1/(1 4+ M), the visible factor 72 to A\/(1 + A) and ) is a growing constant. Then, Eq. (9) is reformulated as:

Hm + Aty 2y1 + )‘22?;2

v N (T

). (10)

We simply write y ~ N (y|py, Xy) and denote the clean target image as «. Since the mask mean fi,,, is just a lower bound
of x, the signal-dependent factor «v; zooms this error. We replace the nosie model in Eq. (10) with a more accurate p(y|x)
of zero mean and variance diag(aty) + 73011 + 73051, The enhanced mixture marginal likelihood that bridges the blind
and visible branches then becomes:

ply) = / plylz)p(zly, 2,)dz. (11

To fit the observed noisy training data, we minimize its negative log-likelihood loss in the training phase as follows:

Lary = —logp(y) = —log [m1p(y1) + m2p(y2)]

= )8y ()] (12)

1
+ 3 log || + const,

where const is an additive constant term that can be discarded, £,,., denotes the proposed adaptive re-visible loss. When the
denoiser converges, the following is the optimal clean value & of Eq. (12):

P+ Ay
1+ A

T =

13)

A.2. Gradient of the Intermediate Medium

With the analytic form of adaptive re-visible loss in Eq. (12), we further explore and validate the collaborative mechanism
between gradient update medium pt,,, and constants p,,. Let ny, = y — p,y, the derivative of the medium p,,, gives its



gradient:
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According to Eq. (15), we observe that including the gradient update term ft,,, in diag(cpt,) results in severe instability
during training because of a complicated second term in the gradient. Therefore, we consider disabling the gradient of
diag (ot ), which stabilizes the training process and enhances the performance of the denoiser. Moreover, we can perform
denoising directly from the raw noise image y in the inference. Combined with the above analysis, the final gradient form



for the medium p,,, becomes:
= ———3,"n,. (16)

Next, we also analyze the collaborative association between another gradient medium 3,,, and other variables:
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Obviously, the gradient of the intermediate medium 32,,, in Eq. (18) is conventional and there is no additional instability term
as in Eq. (15).

Vs (B, =2, Inyn, 8, 7. (18)

B. Additional Implementation Details
B.1. Global Masker and Global Mask Mapper

As mentioned in the paper, we use the same global masker and mask mapper as Blind2Unblind [4]. Figure 1 shows the
details of the global masker and mask mapper. Specifically, the global masker divides the raw noise image y into 2 x 2 cells
and constructs a mask volume £2,, via occluding all pixels at the same location on each cell. The global mask mapper samples
the pixels of the denoised mask volume where the blind spot is located and projects them to the same channel according to
their position to form a denoised image. Code: https://anonymous.4open.science/r/Blind2Sound-1F33/.
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Figure 1. Details of the global masker and mask mapper.

B.2. Training Settings

The covariance determines the output channels of the denoising network: two for grayscale images, nine for sSRGB images,
and fifteen for raw-RGB images. For training the denoising network, the noise estimator and the denoising network are jointly
optimized simultaneously. The weights of the re-visible loss and Cramer Gaussian loss are set to 1 and 0.01, respectively.

C. More Experimental Results


https://anonymous.4open.science/r/Blind2Sound-1F33/
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Figure 2. Visualization results on real-world SIDD Benchmark.
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