Blind Noisy Image Deblurring Using Residual Guidance Strategy

Supplementary Material

1. Overview

In this supplemental material, we provide extended ex-
perimental results to illustrate the superiority of the pro-
posed method. The supplementary material is organized as
follows. In Sec. 2, we present more visual comparisons of
images with different kernels from the Lai et al. dataset [7],
Realblur dataset [13], Levin er al. dataset [9] and Kohler
et al. dateset [5]. In Sec. 3, we illustrate the visual com-
parisons of other methods with and without our proposed
residual guidance strategy on different datasets. In Sec. 4,
we give more visual comparison results for different guid-
ing strategies: NGS and RGS. In Sec. 5, we present some
results of ablation studies.

2. Additional Visual Comparison Results

We compare our method with Zhong et al. [15], Dong
et al. [3], Li et al. [10], Anger et al. [1], Selfdeblur [12],
VDIP [4], Zhang et al. [14], Lee et al. [8], WDIP [2],
DeblurGAN-v2 [6] on different datasets. Here we provide
the comparative results not included in the main text. Notice
that, to ensure fairness, except for end-to-end approaches
[6, 14], we use the same non-blind deblurring method pro-
posed in [15] after estimating the blur kernel.

2.1. Lai et al. dataset

Figs. 1 to 4 display the comparison results on the dif-
ferent types of the Lai er al. dataset [7]. It is apparent that
other methods struggle to accurately estimate the blur ker-
nel shape, leading to numerous ringing artifacts and noise
in the restored results. However, the proposed method
achieves an accurate estimated kernel, recovers substantial
details, and minimizes artifacts effectively.

2.2. Realblur dataset

In Fig. 5, we compare our method with state-of-the-art
methods on the Realblur dataset [13]. It is evident that our
method outperforms others [1, 3, 4, 6, 10, 12, 14] in ef-
fectively removing blur and providing more accurate blur
kernel estimation under noise of o = 0.1. In contrast, ring-
ing artifacts and noise are presented in the results of other
methods.

2.3. Levin er al. dataset

Fig. 6 shows a comparative example on Levin et al. [9].
Our method demonstrates the ability to recover a kernel that
closely approximates the ground truth, resulting in a sharper
and more accurate deblurring outcome. In contrast, the out-
puts of others continue to display noticeable noise and blur.

2.4. Kohler ez al. dataset

Tab. 1 show the qualitative and quantitative results of dif-
ferent methods on the Kohler et al. [5] dataset. It is clear
that our method outperforms other methods [4, 8, 12].

Table 1. Quantitative evaluation of different methods on the
Kohler dataset with o = 0.1.

Method PSNR 1 SSIM1 LPIPS |
SelfDeblur [12]  13.9 0.21 0.64
Lee et al. [8] 22.5 0.62 0.28
VDIP [4] 1246  0.12 0.61
Ours 2494 070 0.27

3. Extension to other method

The proposed multi-scale residual guidance strategy
(RGS) is highly adaptable and can be integrated with other
methods, taking [3] as an example. Dong et al. [3] ad-
dressed blind image deblurring with outliers by proposing
a method that mitigates their impact on blur kernel estima-
tion without relying on heuristic detection steps. Fig. 7 il-
lustrates a saturated blurred image with o = 0.1, which can
be seen as a degraded image with a lot of outliers. How-
ever, the method [3] fails to estimate the blur kernel accu-
rately due to the existence of noise. With the assistance of
RGS, the accuracy of the estimated kernel is significantly
enhanced, effectively eliminating blur. Similarly, Figs. 8
to 10 illustrate the comparative effects of [3] before and af-
ter applying the RGS on the Lai et al. [7], Levin et al. [9],
and RealBlur [13] datasets, respectively. These plots pro-
vide a more intuitive demonstration of how the proposed
strategy enhances the robustness of other methods against
high level of noise.

4. Effectiveness of residual guidance strategy

We present additional comparative results for the two
guidance strategies, NGS and RGS, as illustrated in Figs. 7
to 10. For instance, incorporating the NGS produces rela-
tively more precise kernels with enhanced detail recovery
compared to the method [3]. Additionally, applying the
RGS to [3] yields a more superior outcome than the NGS,
both in terms of kernel estimation and final deconvolution
result. Remarkably, it can be seen that our approach leads
to optimal results. This is because our method builds upon
Liu et al. [11], which introduces an excellent surface-aware
prior that effectively suppresses undesirable artifacts.



5. Ablation study

5.1. The number of scales

Our method is implemented within an image pyramid
framework. Specifically, the number of pyramid layers is
adaptively determined based on the kernel size. To inves-
tigate the impact of scale settings on the proposed RGS,
we compare three configurations: a fixed number of lay-
ers (3 and 5), and our adaptive strategy on the Lai et al.
dataset with noise level of 0 = 0.1. Tab. 2 presents the cor-
responding results for PSNR, SSIM, and MNC under dif-
ferent scale settings. Our adaptive parameterization consis-
tently demonstrates superior performance across all evalua-
tion metrics.

Table 2. Impact of different scale settings of the proposed RGS.

Numbers PSNR1T SSIM1t MNC|
3 scales 19.15 0.57 0.63
5 scales 19.91 0.62 0.71

Adaptive (ours) 21.41 0.75 0.77

5.2. Algorithmic efficiency

We also compare the average inference time of different
methods on the Lai ef al. dataset. Tab. 3 shows that, despite
being a traditional algorithm, our method outperforms some
learning-based approaches in inference time.

Table 3. Average inference time of different methods on the Lai
dataset with o = 0.1.

Method Time (s)
SelfDeblur [12] 757.56
VDIP [4] 605.43
WDIP [2] 10181.98
Lee et al. [8] 315.20

Ours 145.51
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Figure 1. Visual comparisons of different deblurring methods of the saturated type on Lai ef al. dataset [7] with noise level of o = 0.1.
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Figure 2. Visual comparisons of different deblurring methods of the natural type on Lai et al. dataset [7] with a noise level of o = 0.1.
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Figure 3. Visual comparisons of different deblurring methods of the people type on Lai et al. dataset [7] with a noise level of o = 0.1.
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Figure 4. Visual comparisons of different deblurring methods of the manmade type on Lai ef al. dataset [7] with noise level of o = 0.1.
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Figure 5. Visual comparisons of different deblurring methods on the Realblur dataset [13] with noise level of o = 0.1.
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Figure 6. Visual comparisons of different deblurring methods on the Levin et al. [9] dataset with a noise level of o = 0.1.
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Figure 7. Visual comparisons of different guiding strategies on the Lai ez al. [7] dataset with a noise level of o = 0.1.
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Figure 8. Visual comparisons of different guiding strategies on the people type of the Lai ef al. [ 7] dataset with a noise level of ¢ = 0.1.
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Figure 9. Visual comparisons of different guiding strategies on Levin et al. [9] dataset with a noise level of o = 0.1.
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Figure 10. Visual comparisons of different guiding strategies on Realblur dataset [13] with a noise level of o = 0.1.
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