CoLMDriver: LLM-based Negotiation Benefits
Cooperative Autonomous Driving

Supplementary Material

8. Model Details

8.1. VLM-based Intention Planner

Dataset and Training. As described in Sec. 4.2.2, we
adopted a three-stage training approach for the VLM plan-
ner. In the first stage, Driving Knowledge Enhancement
Training, we utilized a sampled DriveLM-CARLA dataset
containing 64k image-QA pairs focused on driving-related
knowledge for perception, prediction, and planning. This
stage was completed in a single epoch. In the second stage,
Intention Tuning, the VLM was fine-tuned on 50k samples
of our collected intention dataset. For each frame, the in-
put query was structured by incorporating the transformed
GT perception information, GT navigation instructions and
speed into the VLM prompt. The response combined nav-
igation and speed intentions. Finally, in the third stage,
Consensus Tuning, we enriched the second-stage dataset
by adding negotiation information. The VLM was fine-
tuned for five epochs in the second stage and one epoch
in the third stage. Key training parameters included LoRA
tuning, DeepSpeed ZeRO-3 optimization, a batch size of
1, and learning rates of 1 x 10~ for stages one and two,
and 1 x 10~° for stage three. For reference, we trained the
InternVL2-4B model on 8 NVIDIA 3090 GPUs, with each
epoch taking approximately 5 hours.

8.2. Intention-guided Waypoint Planner

Model Structure. The Occupancy Encoder and the Fea-
ture Encoder each comprise two convolutional layers with
32 output channels. The MotionNet Encoder includes two
Spatial-Temporal Convolution blocks followed by a stan-
dard convolutional block. Each Spatial-Temporal block
consists of two 2D convolutional layers and one 3D con-
volutional layer. The MotionNet Encoder generates an out-
put with 256 channels. Both the speed intention and di-
rection intention are embedded into 256-dimensional vec-
tors, matching the output channels of the MotionNet En-
coder. Similarly, the target point is transformed into a 256-
dimensional vector using a three-layer MLP. Then the MLP
Fuser combines the concatenated vector into 256 dimen-
sions. The Transformer Decoder, which includes three lay-
ers, applies cross-attention and self-attention mechanisms
to BEV Tokens and Command Tokens. Finally, a two-layer
MLP decoder predicts 10 waypoints, which are used as con-
trol signals.

Dataset. The dataset used for training and testing the gener-
ator is derived from CARLA. The training set is constructed

Table 4. Detailed information of the 10 scenario types in Inter-
Drive Benchmark.

Scenario Scenario Vehicle Carla Route

Type Category Count Town No. Count
Straight-Straight IC 2 05, 06, 07 4
Straight-Left IC 2 05, 06, 07 6
Opposite Lane IC 3,4 05 4
Chaos IC 6,8 05 4
Straight-Right LM 2 05, 06, 07 6
Neighbor Lane LM 2 05, 06, 07 6
Left-Right LM 3,4 05 4
Highway-Merge LM 3,4 06 4
Right-Straight LC 3,4 05 4
Highway-Change LC 6,7,8 06 4

from data in CARLA towns 1, 2, 3, 4, and 6, while data
from towns 7, 8, and 10 are used for validation, and town 5
is reserved for testing. The original training dataset consists
of approximately 25k records. We extend the dataset into
four categories—STOP, SLOWER, KEEP, and FASTER.
This is done by first polynomial fitting the original trajec-
tory and then sample waypoints according to the intention
and environmental information. Then the actual training
dataset grows to approximately 93k records. This number
is slightly less than four times the original dataset size, as
in certain cases, the original trajectory is too short for poly-
nomial fitting. The perception module processes the last
five frames of data, and outputs BEV features and BEV oc-
cupancy. The BEV occupancy contains six channels with a
resolution of 192 x 96, while the BEV feature comprises 128
channels at the same resolution. Intentions are represented
as indexing tensors corresponding to the category of the
given extended record. Training the generator on 8 NVIDIA
3090 GPUs takes approximately 9 hours per epoch, with
convergence typically achieved after 10 epochs.

9. InterDrive Benchmark Details

In the current iteration of the InterDrive Benchmark, we
have meticulously selected 46 routes from the TownOS5,
Town06, and Town(07 scenarios within the CARLA simu-
lator.

Route distribution. In the InterDrive Benchmark, which
consists of 46 routes, 10 scenario types and 3 categories.
We integrate the characteristics of the scenarios with the
specific conditions of each Carla Town to ensure that each
route is both challenging to complete and practically valu-
able. Town(5, characterized by an urban environment, is

Table 5. Driving performance in InterDrive Benchmark with traffic participants.

Method InterDrive-total InterDrive-1C InterDrive-LM InterDrive-LC
DSt RCT IST SRT | DSt RCt ISt SRt | DST RCT IST SRT | DSt RCtT ISt SRt
VAD 25.18 75.66 0.31 0.02 | 22.13 61.31 032 0.00 | 35.10 8823 039 0.05]| 724 76.56 0.09 0.00
UniAD 37.13 88.71 041 0.11 | 37.45 83.52 044 0.06 | 4829 9133 0.52 020 | 848 9382 0.09 0.00
TCP 74.18 9121 0.82 048 | 76.26 84.62 091 044 | 86.59 9500 091 0.65| 3850 96.56 0.40 0.13
LMDrive 4995 61.61 0.84 0.13 | 47.65 5934 081 0.00 | 54.12 67.10 085 0.20 | 44.69 53.02 0.87 025
CoDriving | 64.50 93.58 0.67 047 | 5464 88.08 0.59 0.33 | 88.07 96.55 091 0.73 | 27.78 98,51 0.28 0.13
Rule-based | 69.71 87.35 0.75 0.57 | 66.05 8848 0.72 0.50 | 90.72 97.92 093 0.80 | 2544 5838 0.38 0.13
CoLMDriver | 77.09 92.02 0.80 0.63 | 63.06 82.55 0.70 0.44 | 94.00 100.00 094 0.85 | 66.38 93.41 0.68 0.50

the most representative of the model’s target application en-
vironment, hence its higher number of routes. Town06 is
distinguished by its multi-lane highways, whereas Town(07
primarily features rural scenarios with narrow roads. We
have designed a variety of scenarios by varying the num-
ber of vehicles and the surrounding environments, which
include different towns and diverse intersections, as shown
in Tab. 4. Their inclusion in the benchmark is crucial for
enhancing its diversity and significantly raises the complex-
ity of driving tasks, particularly in terms of vehicle-vehicle
interactions.

Scenario Settings. In order to enhance the fidelity of the
simulation environment to real-world scenarios, we have in-
troduced a certain number of additional traffic participants.
Specifically, we set the number of vehicles, pedestrians, and
cyclists in the environment to 50 each. This allows them
to create a certain level of disturbance without completely
blocking the routes and interfering with the predefined vehi-
cle interactions. Moreover, this numerical value is also ob-
jectively close to the actual traffic conditions in real-world
scenarios.

The result of the simulation with these participants are
shown in Tab. 5. By comparing with Tab. 1, it can be ob-
served that the inclusion of traffic participants has a certain
impact on the methods primarily based on cooperation. In
contrast, the scores of non-cooperative methods remain es-
sentially unchanged or even slightly improve. This is be-
cause these participants still prevent the originally designed
vehicle conflicts in specific scenarios.

10. Inference Latency Details

Fig 6 shows the driving scores with/without considering in-
ference latency, using GPU: NVIDIA RTX 3090 and CPU:
AMD EPYC 7542. Given that the RTX 3090 (284.7 TOPS)
provides similar compute capability to the car-grade Al chip
Orin-X (254 TOPS), our method shows feasibility for real-
world deployment. Tab. 6 shows how latency affects per-
formance. Tab. 7 reports compared methods latency.

The inference latency increases rapidly with the growth
of vehicle numbers. We tackle this with two techniques: (i)
agent grouping to limit negotiation scope, (ii) a dual system
to manage driving during latency. Tab. 8 presents statis-

Table 6. Driving Scoref across various cooperation latency.

Latency / s 0.5 1 2 No negotiation
CoLMDriver | 79.42 76.87 71.35 47.64
CoDriving | 71.53 69.68 62.31 /

Table 7. Methods’ inference latency on RTX 3090

CoLMDriver
negotiation low-level planning
0.76s/round(2 car) 0.12s

Method | VAD UniAD TCP LMDrive Codriving

0.225 0.26s

0.89s 0.12s 0.34s

Latency

tics from latency-aware experiments, showing that negotia-
tion time grows slower than linearly by dynamic grouping
as vehicle numbers increase. Our method handles multi-
agent negotiation and clearly outperforms non-negotiation
approaches.

Table 8. Effect of vehicle number.

Vehicle number

Metrics Negotiation 2 3 4
Negotiation period (s/round) v 076 0.78 1.22
Driving Scoref v 100.0 975 86.7
X 64.0 632 41.7

11. Robustness Experiments

CoLMDiriver is feasible to real-world application. The sys-
tem inputs sensor data and outputs executable steer, throt-
tle, and brake, conforming to real-world situation. Tab. 9
shows robustness under pose noise (follow coalign') com-
pared with non-negotiation approach and cooperative driv-
ing baseline CoDriving.

Table 9. Driving Score? under pose noise situation.
gray: the improvement over the non negotiation approach.

pose noise std (m/°) L
Methods 0.0 06 No negotiation
CoLMDriver | 88.53(+40.89) 83.96(+36.32) 47.64
CoDriving 74.13 65.42 /

Thttps://doi.org/10.48550/arXiv.2211.07214

12. Prompt Details and Example
12.1. Prompt for VLM

To better harness the knowledge and reasoning capabilities
of the VLM, as well as to standardize its output format, we
designed the VLM prompt based on the following struc-
ture: role definition, task description, logical guidance, ad-
ditional rules, real-time input, and output format. The spe-
cific prompt design is detailed in Lst. 1. The content in *{}’
will be replaced by real-time input.

12.2. Prompt for LLM

According to the design of our negotiation module, the
prompts designed for the LLM consist of three types:
vehicle-to-vehicle communication, sum actions, and con-
sensus scoring.

In each round of negotiation, each vehicle broadcasts
messages based on the prompts required for communica-
tion, and subsequently, one vehicle acts as a critic to sum ac-
tions and score. The prompts required for vehicle-to-vehicle
communication are shown at Lst. 2, where the environmen-
tal information and message records are denoted by *{}’
and will change in real-time based on the scenario. The
prompts for action-summing are presented in Lst. 3, with
the output being a JSON-formatted behavior request. The
consensus scoring is then conducted using the prompts de-
signed for evaluation, as shown in Lst. 4, to complete one
round of negotiation. Herein, the placeholder *-conv-" will
be dynamically replaced with the current message record.

13. Autonomous Vehicle Details

The autonomous vehicle in CoLMDriver processes sensor
data and produces control signals as its final output. This
section offers a detailed introduction to the sensor setup and
controller configuration.

Sensor configurations. In CoLMDriver, we use the front-
facing image with a resolution of 3000x 1500 and a hor-
izontal field of view (FoV) of 100° as an input for the
VLM-based intention planner. For 3D detection, we rely
on point clouds generated by a 64-channel LiDAR mounted
at a height of 1.9 meters, with an upper FoV of 10° and a
lower FoV of —30°.

Controller configurations. The controller generates ex-
ecutable driving actions, including steering, throttle, and
braking, based on the predicted waypoints. To achieve this,
we employ two PID controllers: a lateral controller and a
longitudinal controller, which produce the corresponding
control signals. The lateral signal (turn signal) is calcu-
lated using the angle between the last two predicted way-
points, while the longitudinal signal (speed signal) is calcu-
lated using the average displacement in the predicted way-
points. Subsequently, we use the PID controller to generate
a relatively smooth output. Mathematically, let £ € RN

be the historical signal with a time length of N, each PID
controller takes the current signal x as input and outputs
' =Kp+x+ K« MEAN(E) + Kp = (E[-1] — E[-2])
, where [Kp, K;, Kp, N] forms a set of hyper-parameters
for a PID controller. Specifically, the lateral controller is
configured with [1, 0.2, 0.1, 5], while the longitudinal con-
troller uses [5, 1, 0.1, 20].

Suppose you are an autopilot assistant driving a car on the road. You will receive images from the car’
s front camera and are expected to provide driving intentions. There are other traffic participants in
the scenario, and you may have communication with them. Your analysis logic chain should be as follows:
Understand the direction of the road and your own position.

Perceive surrounding objects.

Pay attention to key objects and dangerous situations.

Follow the rules listed below.

Check communication decision.

Finally, conclude the situation and provide driving intentions.

oUW N

Rules

If the environment is safe and clear, drive fast

Maintain a safe distance from the car in front.

Stop to avoid pedestrians preparing to cross the road.

Slow down or stop when other vehicles change lanes, merge or turn.

Slow down or stop when there is obstacle on the road ahead.

. When establishing communication with other vehicles, take the communication decision as important
reference.

o Ul b W N

Perception Results

{perception}

Real-time Inputs

Negotiation suggestion: {negotiation message}
Target direction: {navigation instruction}
Current Speed: {speed} m/s

Output Requirements

Provide the navigation and speed intention. Navigation intention include ’'turn left at intersection’, '
turn right at intersection’, ’go straight at intersection’, ’follow the lane’, ’left lane change’, '
right lane change’. Speed intention include STOP, FASTER, SLOWER, KEEP.

Listing 1. VLM intention generation prompt

Role

You are a driving assistant of a car (Vehicle ID: {i}). Given a scenario where multiple vehicles are in
conflict, you need to negotiate with other vehicles to reach a consensus and ensure the safety and

efficiency of all vehicles involved.

Scenario

- Ego Vehicle (ID: {info[’ego_id’]}): Intention = {info[’ego_intention’]}, Speed = {round(infol[’
ego_speed’], 1)}m/s

- Surrounding Vehicles:

{veh_string}

Traffic Rules

0. In emergency situations, allow vehicles with special circumstances to pass through first.
1. Merging cars slow down to yield to straight car.

2. Left-turn cars slow down to yield to straight/right-turn car.

3. The car being yielded to go faster.

4. Cars behind decrease speed during emergency braking.

5. Following cars maintain a safe distance.

Task

Based on the scenario info and conversation history, analyze the situation considering the x*speed,
direction, distance and intention of each vehiclex+. Make sure you understand the situation before
making any decisions. Pay attention to the traffic rules and critic suggestion. Identify any potential
conflicts and propose actions that ensure the safety and efficiency of all vehicles involved. Remember
to consider others’ actions and requests from previous conversations. When conflicts occur, either
request others to yield or yield to others.

Your message may contain the action you will take and requests for other vehicles. *xThe actions and
requests are speed intentionsx*x

Negotiation Tips

- Your actions should be logically consistent with your requests. No need for both sides to yield.
— Clearly specify which vehicle is responsible for each request or action.

- Focus your message on speed rather than navigation.

Conversation History
{previous_conv} {sug_str}

Output

You are vehicle {info[’ego_id’]}, you need to send a message to other cars. Please output the message
only, within 18 words. Please do not provide specific speed values; instead, describe the trend of
speed changes.

Sample output: I will [speed intention]; [requested speed intention].

Listing 2. LLM negotiation prompt - ego vehicle communication

Task

Given a conversation of multiple cars negotiating to reach consensus, classify each vehicle’s speed
change into [STOP, SLOWER, KEEP, FASTER] and output the result as a string in format: {’id’: car_id, '
speed’ : category}.

Classification rules

— STOP: Come to a complete stop.
— SLOWER: Decrease speed.

— KEEP: Maintain current speed.
— FASTER: Increase speed.

Additional rules:
- If a car request others to yield, it should go faster
- If a car yield to others, it should stop

Input conversation:

{conv}

Your task is to analyze the given conversations for each vehicle and output the classification as a
string in the specified format. DO NOT output other content other than the required actions. Ensure the
output matches the required structure exactly.

Output example:
{"0": {"speed": "STOP"}, "1":{"speed": "SLOWER"}, "2":{"speed": "SLOWER"}...}

Listing 3. LLM negotiation prompt - sum actions

Task Description:

Please analyze the following conversation and determine whether the characters have reached a consensus
in the given scenario. Your response should include two parts: the first part is a brief explanation

of whether a consensus was reached; the second part is a score indicating the degree of consensus,

ranging from 0 to 100, where 0 means no consensus at all, and 100 means complete consensus.

Scoring Criteria:

0-20: There are significant disagreements with almost no common ground.

21-40: While there are some disagreements, there are one or two points where both parties can accept
each other’s views.

41-60: There is a moderate level of compromise and understanding on most discussed topics, but
important disagreements remain unresolved.

61-80: Consensus has been reached on most issues, with only minor differences of opinion on a few
details.

81-100: Almost all issues have been agreed upon by all parties, with only negligible objections
remaining.

Scenario: On the road, multiple cars may have driving conflicts now. They negotiate with each other to
avoid conflict.

Conversation:

{conv}

Your output format:
Short analysis: very short sentence to sum the consensus situation of the conversation.
Consensus score: int

Listing 4. LLM negotiation prompt - consensus score evaluation

