
Dataset Distillation via the Wasserstein Metric

Supplementary Material

The supplementary material is structured as follows:
• Appendix A outlines the potential social impact of our work;
• Appendix B provides a possible theoretical explanation why the Wasserstein metric shows superior performance to MMD

in our experiments;
• Appendix C discusses the method for Wasserstein barycenter computation in more detail;
• Appendix D presents our algorithmic framework;
• Appendix E presents our implementation details;
• Appendix F examines the computational efficiency our method;
• Appendix G visualizes how our synthetic data is distributed relative to the real data in feature space.
• Appendix H discusses the increased variety in our synthetic images;
• Appendix I provides more visualization examples.

A Discussion on Potential Social Impact
Our method, focused on accurately matching data distributions, inherently reflects existing biases in the source datasets, po-
tentially leading to automated decisions that may not be completely fair. This situation underscores the importance of actively
working to reduce bias in distilled datasets, a critical area for further investigation. Despite this, our technique significantly
improves efficiency in model training by reducing data size, potentially lowering energy use and carbon emissions. This not
only benefits the environment but also makes AI technologies more accessible to researchers with limited resources. While
recognizing the concern of bias, the environmental advantages and the democratization of AI research our method offers are
believed to have a greater positive impact.

B Theoretical Explanation on the Superior Performance of the Wasserstein Metric
In this section, we provide a possible theoretical explanation for the observed superior performance of the Wasserstein metric
over the MMD metric in our experiments (shown in Fig. 4 of the main paper).

It is important to note that the performance of dataset distillation (DD) methods depends largely on various factors in the
algorithmic framework, such as the choice of neural networks or kernels [36], image sampling strategies, loss function design
[62], and techniques like factorization [29] and FKD [37]. Additionally, high-resolution datasets, which pose challenges
to most existing DD methods, often necessitate trading some precision for computational feasibility in algorithm design.
Consequently, we do not aim to assert that the Wasserstein metric is consistently superior as a statistical metric for distribution
matching in DD, nor do we believe this to be the case. Instead, we provide a theoretical explanation for the observed superior
performance of the Wasserstein metric by combining error bound analysis with practical considerations in DD algorithms,
hoping to provide some insights into this phenomenon.

We consider two methods for measuring the discrepancy between the synthetic distribution Q and the real data distri-
bution P: the Wasserstein distance and the empirical Maximum Mean Discrepancy (MMD). Specifically, we focus on the
Wasserstein-1 distance W1, as it provides a meaningful and tractable metric in our context.

B.1 Setup and Notation
Let X → Rd denote the input space (assumed to be compact), and Y → R the label space. Let P be the real data distribution
over X , and Q the synthetic data distribution over X . Let f : X ↑ Y be the labeling function. We consider a hypothesis
class H of functions h : X ↑ Y . The loss function is ω : Y ↓ Y ↑ [0,↔), and we denote the composite loss function as
g(x) = ω(h(x), f(x)).

B.2 Assumptions
We make the following assumptions:
• A1. The composite loss function g(x) is Lipschitz continuous with respect to x, with Lipschitz constant L:

|g(x)↗ g(x→)| = |ω(h(x), f(x))↗ ω(h(x→), f(x→))| ↘ L≃x↗ x
→
≃. (16)

• A2. The input space X is compact.
• A3. The kernel k(x, x→) used in MMD calculations is a characteristic kernel. That means, MMDk(P,Q) = 0 implies
P = Q.

• A4. The composite loss function g(x) lies in the Reproducing Kernel Hilbert Space (RKHS) Hk associated with the kernel
k, with RKHS norm ≃g≃Hk < ↔.

B.3 Theoretical Analysis
Our goal is to bound the difference in expected losses between the real and synthetic distributions:

|Ex↑P[g(x)]↗ Ex↑Q[g(x)]| . (17)

Bounding Using Wasserstein Distance Under Assumption A1, the function g(x) is Lipschitz continuous with constant L.
By the definition of the Wasserstein-1 distance W1:

W1(P,Q) = inf
ω↓!(P,Q)

E(x,x→)↑ω [≃x↗ x
→
≃], (18)

where !(P,Q) is the set of all couplings of P and Q.
Using any coupling ε ⇐ !(P,Q), we have:

|EP[g(x)]↗ EQ[g(x)]| =

∣∣∣∣
∫

X

g(x) dP(x)↗
∫

X

g(x→) dQ(x→)

∣∣∣∣

=

∣∣∣∣
∫

X↔X

(g(x)↗ g(x→)) dε(x, x→)

∣∣∣∣

↘

∫

X↔X

|g(x)↗ g(x→)| dε(x, x→)

↘ L

∫

X↔X

≃x↗ x
→
≃ dε(x, x→)

= LE(x,x→)↑ω [≃x↗ x
→
≃]. (19)

Since this holds for any coupling ε, it holds in particular for the optimal coupling that defines W1(P,Q):

|EP[g(x)]↗ EQ[g(x)]| ↘ LW1(P,Q). (20)

This bound shows that minimizing the Wasserstein-1 distance W1(P,Q) directly controls the difference in expected losses
via the Lipschitz constant L.

Bounding Using MMD Under Assumption A4, the function g(x) lies in the RKHS Hk associated with the kernel k, with
norm ≃g≃Hk . The Maximum Mean Discrepancy (MMD) between P and Q is defined as [18]:

MMDk(P,Q) = ≃µP ↗ µQ≃Hk
, (21)

where µP = Ex↑P[k(x, ·)] is the mean embedding of P in Hk.
Then, we have:

|EP[g(x)]↗ EQ[g(x)]| = |⇒g, µP ↗ µQ⇑Hk |

↘ ≃g≃Hk ≃µP ↗ µQ≃Hk

= ≃g≃Hk MMDk(P,Q). (22)

B.4 Discussion

For a reasonably expressive neural network trained on the compact synthetic data, EQ[g(x)] should be close to 0. From
Eq. (20) and Eq. (22) we know the key in comparing the error bound for both metrics lies in comparing LW1(P,Q) and
≃g≃Hk MMDk(P,Q). When the inputs are raw pixels and h includes a deep neural network, both the Lipschitz constant L
and the RKHS norm ≃f≃Hk can be large due to the complexity of h. However, when the inputs are features extracted by an
encoder e, which is the case for most DD methods, h can be a simpler function, leading to smaller values for L and ≃g≃Hk .

In practice, most existing MMD-based methods [45, 60, 62] approximate distribution matching by aligning only the first-
order moment (mean) of the feature distributions. They minimize a loss function of the form:

Lmean = ≃µP ↗ µQ≃
2
, (23)

where µP = 1
N

∑
i
g(xi) with xi ⇓ P, and µQ = 1

M

∑
j
g(sj) with sj ⇓ Q, are the empirical means of the feature

representations from the real and synthetic datasets, respectively.
This mean feature matching is mathematically equivalent to minimizing the MMD with a linear kernel: k(x,y) = ⇒x,y⇑

which simplifies the MMD to:

MMD2
k
(P,Q) = ≃Ex↑P[x]↗ Ex↑Q[x]≃

2
. (24)

However, the linear kernel is generally not characteristic, meaning it cannot uniquely distinguish all probability distribu-
tions. As a result, aligning only the means leads to inaccurate distribution matching, neglecting higher-order moments like
variance and skewness. This inaccuracy can cause the actual discrepancy between the distributions to remain large, even if the
MMD computed with the linear kernel is minimized. Consequently, the inaccurate approximation does not reduce the actual
MMD value that would be computed with a characteristic kernel, leaving a significant distributional mismatch unaddressed.

The M3D method [55] improves the precision of MMD-based distribution matching by using a more expressive kernel
such as the Gaussian RBF kernel, which effectively captures discrepancies across all moments, with the MMD equation
below:

MMD2
k
(P,Q) =Ex,x→↑P[k(x,x

→)] + Es,s→↑Q[k(s, s
→)] (25)

↗ 2Ex↑P,s↑Q[k(x, s)]. (26)

However, this approach introduces sensitivity to the choice of kernel and its parameters, which may be less favorable
because an unsuitable kernel may fail to capture important characteristics of the distributions. Moreover, computing the full
MMD with a characteristic kernel requires evaluating the kernel function for all pairs of data points, including those from the
extensive real dataset, scaling quadratically with dataset size. As a result, this method generally incurs more computational
cost compared to earlier methods such as DM and does not scale to large datasets such as ImageNet-1K.

In general, existing MMD-based methods often struggle to achieve precise distribution matching in a way scalable to large
datasets. In contrast, the Wasserstein-1 distance inherently accounts for discrepancies in all moments without relying on a
kernel function. Its computational feasibility is ensured by the efficient algorithms for Wasserstein barycenter computation
and the reduced dimensionality in the feature space. This may explain why, in our experiments, the Wasserstein-1 distance
led to better performance than MMD-based approaches that rely on mean feature matching with linear kernels.

C More Explanations on the Method

In this section, we expand our discussion in Sec. 4.2 in more details, to explain how we adapt the method in [8] for efficient
computation of the Wasserstein barycenter.

C.1 Optimizing Weights Given Fixed Positions

The optimization of weights given fixed positions in the optimal transport problem involves solving a linear programming
(LP) problem, where the primal form seeks the minimal total transportation cost subject to constraints on mass distribution.

Given the cost matrix C and the transport plan T , the primal problem is formulated as:

min
T

⇒C,T⇑F (27)

subject to
m∑

j=1

tij =
1

n
, ⇔i, (28)

n∑

i=1

tij = wj , ⇔j, tij ↖ 0, ⇔i, j, (29)

where ⇒·, ·⇑F denotes the Frobenius inner product.
The corresponding dual problem introduces dual variables ϑi and ϖj , maximizing the objective:

max
ε,ϑ






n∑

i=1

ϑi

n
+

m∑

j=1

wjϖj




 (30)

subject to ϑi + ϖj ↘ cij , ⇔i, j. (31)

Given the LP’s feasibility and boundedness, strong duality holds, confirming that both the primal and dual problems
reach the same optimal value [2]. This equivalence implies that the set of optimal dual variables denoted as ω, acts as a
subgradient, guiding the weight updates. Specifically, this subgradient indicates how the marginal costs vary with changes
in the weights. To update the weights w towards their optimal values wϖ, we implement the projected subgradient descent
technique. This method ensures that w remains within the probability simplex, and under appropriate conditions on the step
sizes, it guarantees convergence to the optimal solution.

C.2 Optimizing Positions Given Fixed Weights
C.2.1 Gradient Computation
Given the cost matrix C with elements cij = ≃x̃j ↗xi≃

2, the gradient of the cost function with respect to a synthetic position
x̃j is derived from the partial derivatives of cij with respect to x̃j . The gradient of cij with respect to x̃j is:

↙x̃jcij = 2(x̃j ↗ xi). (32)

However, the overall gradient depends on the transport plan T that solves the optimal transport problem. The gradient of
the cost function f with respect to x̃j takes into account the amount of mass tij transported from x̃j to xi:

↙x̃jf(X̃) =
n∑

i=1

tij↙x̃jcij =
n∑

i=1

tij2(x̃j ↗ xi). (33)

C.2.2 Hessian Computation
The Hessian matrix H of f with respect to X̃ involves second-order partial derivatives. For p = 2, the second-order partial
derivative of cij with respect to x̃j is constant:

ϱ
2
cij

ϱx̃2
j

= 2I, (34)

where I is the identity matrix. Thus, the Hessian of f with respect to X̃ for each synthetic point x̃j is:

Hj =
n∑

i=1

tij2I = 2I
n∑

i=1

tij = 2Iwj , (35)

since
∑

n

i=1 tij = wj , the amount of mass associated with synthetic point x̃j .

C.2.3 Newton Update Formula
The Newton update formula for each synthetic position x̃j is then:

x̃(new)
j

= x̃j ↗H
↗1
j

↙x̃jf(X̃) (36)

= x̃j ↗
1

2wj

n∑

i=1

tij2(x̃j ↗ xi). (37)

Simplifying, we obtain:

x̃(new)
j

= x̃j ↗

n∑

i=1

tij(x̃j ↗ xi)/wj . (38)

This formula adjusts each synthetic position x̃j in the direction that reduces the Wasserstein distance, weighted by the
amount of mass transported and normalized by the weight wj .

D Algorithm details
As discussed in Section 4.3 (Algorithm 1) in the main paper, our method involves computing the Wasserstein barycenter of
the empirical distribution of intra-class features. This section details the algorithm employed.

Let us denote the training set as T = {xk,i}
k=1,...,g
i=1,...,nk

, where g is the number of classes and nk is the number of images in
class k. In the rest of this section, we only discuss the computation for class k, so we omit the index k from the subscript of
related symbols for simplicity, e.g., xk,i is simplified as xi. A feature extractor fe(·) embeds the real data of this class into
the feature space Rdf , yielding a feature matrix Z ⇐ Rnk↔df , where the ith row zi = fe(xk,i). We employ the algorithm
shown in Algorithm 2 to compute the Wasserstein barycenter of the feature distribution. It takes Z as input and outputs a
barycenter matrix B↘

⇐ Rmk↔df , where the jth row b↘

j
is the feature for learning the jth synthetic image, and an associated

weight vector (probability distribution) w↘
⇐ Rmk .

Algorithm 2: Iterative Barycenter Learning for Dataset Distillation
Result: Optimized barycenter matrix B↘ and weights w↘.

1 Input: Feature matrix of real data Z ⇐ Rnk↔df , initial synthetic dataset positions B(0)
⇐ Rmk↔df , number of

iterations K, learning rate ς;
2 Initialize weights w(0) uniformly;
3 for k = 1 to K do

// Optimize weights given positions

4 Construct cost matrix C
(k) with B(k↗1) and Z;

5 Solve optimal transport problem to obtain transport plan T(k) and dual variables ω(k);

6 Update weights w(k) using projected subgradient method: w(k) = Project
(
w(k↗1)

↗ ςω(k)
)

, ensuring

w
(k)
j

↖ 0 and
∑

j
w

(k)
j

= 1;
// Optimize positions given weights

7 Compute gradient ↙Bf as per: ↙bjf =
∑

n

i=1 t
(k)
ij

2(b(k↗1)
j

↗ zi), ⇔j;
8 Update positions B(k) using Newton’s method: b(k)

j
= b(k↗1)

j
↗H

↗1
j

↙bjf, ⇔j, where Hj is the Hessian;
9 end

10 B↘
∝ B(K), w↘

∝ w(K);

E Implementation details
In our experiments, each experiment run was conducted on a single GPU of type A40, A100, or RTX-3090, depending on
the availability. We used torchvision [31] for pretraining of models in the squeeze stage, and slightly modified the model
architecture to allow tracking of per-class BatchNorm statistics.

We remained most of the hyperparameters in [53] despite a few modifications. In the squeeze stage, we reduced the
batch size to 32 for single-GPU training and correspondingly reduced the learning rate to 0.025. In addition, we find from
preliminary experiments that the weight decay at the recovery stage is detrimental to the performance of synthetic data, so
we set them to 0.

For our loss term in Eq. (15), we set lambda (φ) to 500 for ImageNet, 300 for Tiny-ImageNet, and 10 for ImageNette. We
set the number of iterations to 2000 for all datasets. Table 6b-6d shows the hyperparameters used in the recover stage of our
method. Hyperparameters in subsequent stages are kept the same as in [53].

config value

optimizer SGD
learning rate 0.025
weight decay 1e-4
opti. mom. 0.9
batch size 32
scheduler cosine decay
train. epoch 100

(a) Squeezing setting for all datasets

config value

lambda 10
optimizer Adam
learning rate 0.25
opti. mom. ω1,ω2 = 0.5, 0.9
batch size 100
scheduler cosine decay
recover. iter. 2,000

(b) Recovering setting for Ima-
geNette

config value

lambda 300
optimizer Adam
learning rate 0.1
opti. mom. ω1,ω2 = 0.5, 0.9
batch size 100
scheduler cosine decay
recover. iter. 2,000

(c) Recovering setting for Tiny-
ImageNet

config value

lambda 500
optimizer Adam
learning rate 0.25
opti. mom. ω1,ω2 = 0.5, 0.9
batch size 100
scheduler cosine decay
recover. iter. 2,000

(d) Recovering setting for ImageNet-
1K

Table 6. Hyperparameter settings for model training and recovering.

F Efficiency Analysis
Having demonstrated the effectiveness of our approach, we now examine its computational efficiency—a crucial factor for
practical deployment. To evaluate the time and memory efficiency of our method, we measured the time used per iteration,
total computation time, and the peak GPU consumption of our method with a 3090 GPU on ImageNette in the 1 IPC setting
and compared these metrics among several different methods. The results are shown in Table 7. As the Wasserstein barycenter
can be computed efficiently, our method only brings minimal additional computation time compared with most efficient
methods such as [53]. This makes it possible to preserve the efficiency benefits of the distribution-based method while
reaching strong performance.

Method Time/iter (s) Peak vRAM (GB) Total time (s)

DC 2.154 ± 0.104 11.90 6348.17
DM 1.965 ± 0.055 9.93 4018.17

SRe2L 0.015 ± 0.029 1.14 194.90
WMDD 0.013 ± 0.001 1.22 207.53

Table 7. Distillation time and GPU memory usage on ImageNette using a single GPU (RTX-3090) for all methods. ‘Time/iter’ indicates
the time to update 1 synthetic image per class with a single iteration. This duration is measured in consecutive 100 iterations, and the mean
and standard deviation are reported. For a fair comparison, we keep the original image resolution and use the ResNet-18 model to distill
2,000 iterations for all methods.

G Feature Embedding Distribution
To provide intuitive insight into why our method achieves superior performance, we visualize how our synthetic data is
distributed relative to the real data in feature space. We train a model from scratch on a mixture of both data to map the real
and synthetic data into the same feature space. Then we extract their last-layer features and use the t-SNE [43] method to
visualize their distributions on a 2D plane. For comparison, we conduct this process for the synthetic data obtained using
our method and the SRe2L [53] method as a baseline. Figure 6 shows the result. In the synthetic images learned by SRe2L,
synthetic images within the same class tend to collapse, and those from different classes tend to be far apart. This is probably
a result of the cross-entropy loss they used, which optimizes the synthetic images toward maximal output probability from
the pre-trained model. In contrast, our utilization of the Wasserstein metric enables synthetic images to better represent the

Figure 6. Distribution visualization of ImageNette. The dots present the original dataset’s distribution using the model’s latent space (e.g.,
ResNet-101), and the triangles are distilled images. Left: data distilled by SRe2L; Right: data distilled by our method.

distribution of real data, maintaining both intra-class diversity and inter-class relationships that are crucial for effective model
training.

H Increased Variety in Synthetic Images
Visualization of the synthetic images at the pixel level corroborates our finding in Appendix G, with the ImageNet-1K Hay
class being one such example, as shown in Figure 7. Compared to the SRe2L baseline synthetic images, our method leads to
improved variety in both the background and foreground information contained in synthetic images. By covering the variety
of images in the real data distribution, our method prevents the model from relying on a specific background color or object
layout as heuristics for prediction, thus alleviating the potential overfitting problem and improving the generalization of the
model. We provide more visualization on three datasets in Appendix I.

SRe2L synthetic images of class Hay (classId: 958)

Our synthetic images of the class Hay (classId: 958)

Figure 7. Visualizations of our synthetic images vs. SRe2L baseline synthetic images from ImageNet-1K Hay class (classId: 958).

I Visualizations
We provide visualization of synthetic images from our condensed dataset in the supplementary material. In Figure 8, our
observations reveal that the synthetic images produced through our methodology exhibit a remarkable level of semantic
clarity, successfully capturing the essential attributes and outlines of the intended class. This illustrates that underscores
the fact that our approach yields images of superior quality, which incorporate an abundance of semantic details to enhance
validation accuracy and exhibit exceptional visual performance.

Additionally, Figure 9 show our synthetic images on smaller datasets. Figure 10 shows the effect of the regularization

strength. In Figure 11, we compare the synthetic data from our method and [53]. It can be seen that our method enables the
synthetic images to convey more diverse foreground and background information, which potentially reduces overfitting and
improves the generalization of models trained on those images.

Leopard Tiger Lion Yorkshire Bison Robin Agama Tree Frog Alligator Snail

Pizza Corn Lemon Pineapple Cauliflower Macaw Ostrich Seashore Snake Fence

Cock Grey Owl Peacock Flamingo Gold Fish Goose Jellyfish Sea Lion Shark Bulbul

Cliff CoralReef Lakeside Website Volcano Valley Geyser Foreland Sandbar Alp

Dough Banana Broccoli Orange Potato Bagel Fig Cardoon Hay Red Wine

Figure 8. Visualizations of our synthetic images from ImageNet-1K

Goldfish Salamander Bullfrog TailedFrog Alligator Scorpion Penguin Lobster Sea Gull Sea Lion

Tiny-ImageNet

Tench Springer CassettePlyr Chain Saw Church FrenchHorn Garb. Truck Gas Pump Golf Ball Parachute

ImageNette

Figure 9. Visualizations of our synthetic images on smaller datasets

ω = 0.1

ω = 1

ω = 10

ω = 100

ω = 1000

Figure 10. Visualization of synthetic images in ImageNet-1K with different regularization coefficient ε

SRe2L synthetic images of class White Shark (classId: 002)

Our synthetic images of the class White Shark (classId: 002)

SRe2L synthetic images of class Sea Snake (classId: 065)

Our synthetic images of the class Sea Snake (classId: 065)

SRe2L synthetic images of class Geyser (classId: 974)

Our synthetic images of the class Geyser (classId: 974)

SRe2L synthetic images of class Flamingo (classId: 130)

Our synthetic images of the class Flamingo (classId: 130)

Figure 11. Comparison of synthetic images obtained from our method vs. SRe2L on ImageNet-1K in 10 IPC setting. Our method yields
synthetic images that better cover the diversity of real images within each class.

