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Supplementary Material

This supplementary document is organized as follows:
Sec. 1 presents additional visual results.
Sec. 2 presents the results under six degradation experimen-

tal settings.
Sec. 3 provides the construction of the UHD dataset and

details of the experimental setup.

1. More visual comparison results.
We present additional visual results for low-light image en-
hancement, image dehazing, image deblurring, and moiré
pattern removal in Figures 1 to 4. As can be observed, our
method achieves minimal degradation artifacts while main-
taining the consistency of background information in the
images.

2. The results under six degradation experimen-
tal settings

We further design six types of degraded UHD all-in-one
experiments, including low-light enhancement, image de-
blurring, image dehazing, image denoising, image deraining,
and image desnowing. The experimental results are shown
in Tab. 2. Our method significantly outperforms both tradi-
tional all-in-one approaches and UHD restoration methods.
By balancing efficiency and performance, we validate the
effectiveness of our method.

3. Experimental Details
3.1. Datasets
The various UHD degradation scenarios in this paper are
based on UHD-LL [7], UHD-blur [4], UHD-haze [19], UHD-
rain [2], and UHD-snow [12]. For UHD denoising, 4k im-
ages from [17] are used as the background.The distributions
of the training and testing sets for all datasets are shown in
Tab. 1.

3.2. Implementation Details
The number of encoder and decoder layers is set to 3, the
number of modules in the latent image restoration network
is set to 6, and the number of Glow modules in CIMF-Net is
set to 3.

For the first stage, we train Clean-VAE on the image
reconstruction task. The initial learning rate is set to 5×10−4,
gradually reduced to 1× 10−7 using cosine annealing. The
batch size is set to 16, and the images are randomly cropped
to 256× 256.

In the second stage, we train CD²-VAE based on paired
degraded-clean image inputs for feature disentanglement
training. On one hand, the degraded latent extracted from
the input is combined with the clean latent extracted by the
Clean-VAE encoder and input into the degraded decoder for
the reconstruction of the degraded image. On the other hand,
the disentangled background features are input into Clean-
VAE’s decoder for the reconstruction of the clean image.
The initial learning rate is set to 5×10−4, gradually reduced
to 1× 10−7 using cosine annealing. The batch size is set to
12, and the images are randomly cropped to 256× 256.

For the third stage, we train D²R-UHDNet on the image
restoration task, keeping the parameters of CD²-VAE frozen.
We fine-tune the parameters of the LaReNet and CIMF-Net.
The initial learning rate is set to 4×10−4, gradually reduced
to 1× 10−7 using cosine annealing. The batch size is set to
6, and the images are randomly cropped to 512× 512.

3.3. Training procedure
In the first phase, Clean-VAE is trained for the image recon-
struction task using clean images. The clean input image is
denoted as Ih, and the corresponding reconstructed image is
represented as Ir1.

The loss function for a standard Variational Autoencoder
(VAE) comprises two key terms: the reconstruction loss and
the KL divergence loss. The reconstruction loss quantifies
the difference between the decoder’s output and the origi-
nal input, ensuring the output remains consistent with the
input image [15]. The KL divergence loss regularizes the la-
tent space by encouraging the posterior distribution to align
with the prior distribution. This regularization improves
the model’s ability to generate consistent and continuous
reconstructions from similar inputs [20].

We adopt this approach, where the reconstruction loss
and KL divergence loss are defined as follows:

Lrec1 =
1

N

N∑
i=1

∥I(i)r1 − I
(i)
h ∥1,

LKL = DKL(q(z|I)∥p(z)),

(1)

where q(z|Ih) represents the approximate posterior distribu-
tion of the latent variable z given the input image Ih, and
p(z) is the prior distribution, usually chosen as a standard
Gaussian distribution N (0, I). The KL divergence DKL
measures the discrepancy between the posterior distribution
q(z|Ih) and the prior distribution p(z).

Additionally, we enforce frequency domain consistency
in the reconstruction results using the FFT loss, which is



Table 1. Dataset details and corresponding tasks.

Dataset Training samples Testing samples Task

UHD-Snow 2,000 200 Desnowing
UHD-Blur 1,964 300 Deblurring
UHD-Rain 2,000 500 Deraining
UHD-LL 2,000 115 LLIE
UHD-Haze 2,290 231 Dehazing
UHD-Noise 2,000 500 Denoising

Table 2. Comparison to state-of-the-art on three degradations. PSNR (dB, ↑), SSIM (↑), LPIPS (↓) and FS represents full-size 4K image
inference. FLOPs are computed for an input size of 256×256. Best and second best performances are highlighted.

Method FS FLOPs Params. Low Light Deblurring Dehazing Denoising Deraining Desnowing Average
UHD-LL UHD-blur UHD-haze UHDNσ=50 UHD-rain UHD-snow

AIRNet [6] ✗ 301G 9M 22.68 .887 23.52 .876 18.24 .846 22.38 .876 26.35 .876 27.38 .924 23.43 .874 .1861
IDR [16] ✗ 88G 15.3M 24.33 .915 25.64 .788 18.68 .879 29.64 .906 28.82 .906 30.48 .945 26.27 .890 .1912
PromptIR [9] ✗ 158G 33M 23.3 .911 26.48 .805 20.14 .901 24.88 .835 28.89 .897 30.78 .966 25.74 .886 .2155
CAPTNet [5] ✗ 25G 24.3M 24.97 .921 26.32 .796 20.32 .903 21.64 .569 29.34 .908 32.21 .974 25.80 .845 .2861
NDR-Restore [14] ✗ 196G 36.9M 25.12 .885 25.64 .791 19.21 .896 31.44 .915 29.24 .897 28.41 .948 26.51 .889 .3108
Gridformer [13] ✗ 367G 34M 23.92 .898 25.68 .782 18.87 .889 32.86 .915 29.37 .904 28.24 .942 26.49 .895 .2321
DiffUIR-L [18] ✗ 10G 36.2M 22.64 .902 25.08 .785 18.62 .889 33.25 .928 27.89 .886 27.36 .945 25.81 .889 .1844
Histoformer [10] ✗ 91G 16.6M 25.73 .915 26.55 .796 18.73 .897 33.05 .924 27.96 .884 27.56 .971 26.59 .898 .1855
adaIR [3] ✗ 147G 28.7M 23.84 .918 26.86 .803 19.34 .910 32.46 .923 28.18 .901 27.72 .953 26.40 .901 .2492
HAIR [1] ✗ 41G 29M 25.22 .897 24.77 .799 18.75 .883 32.50 .915 28.76 .893 27.89 .968 26.31 .892 .2607
UHDformer [11] ✓ 3.0G 0.33M 22.87 .891 24.68 .792 20.02 .888 27.23 .892 28.32 .953 28.24 .882 25.23 .883 .2012
UHDDIP [12] ✓ 2.2G 0.81M 24.56 .887 24.26 .794 19.68 .872 28.12 .889 28.78 .942 28.07 .893 25.58 .880 .2278
DreamUHD [8] ✓ 4.1G 1.46M 25.12 .901 25.82 .796 20.21 .908 29.08 .901 30.42 .950 32.12 .914 27.13 .895 .1998
Ours ✓ 4G 1.0M 26.14 .916 26.87 .799 20.38 .911 29.64 .912 32.28 .968 33.32 .929 28.11 .906 .1842

defined as:

LFFT1 =
1

N

N∑
i=1

∥FFT(I(i)rec )− FFT(I(i)h )∥1. (2)

In the second phase, the input degraded image is denoted
as Id, which corresponds to the clean image Igt. After fea-
ture disentanglement learning with CD²-VAE, the degraded
image Idrec

and the clean image Igtrec are reconstructed.
The same reconstruction loss and frequency loss from the
first phase are applied, and they are expressed as follows:

Lrec2 =
1

N

N∑
i=1

∥I(i)drec
− I

(i)
d ∥1 + ∥I(i)gtrec

− I
(i)
gt ∥1

LFFT2
=

1

N

N∑
i=1

∥FFT(I(i)drec
)− FFT(I(i)d )∥1

+ ∥FFT(I(i)gtrec
)− FFT(I(i)gt )∥1

(3)

In the third phase, the parameters of CD²-VAE are frozen,
and D²R-UHDNet takes over the image restoration task. The
input consists only of the degraded image Id, and the output
of this restoration process is the restored image, denoted
as Ir. The loss function is constructed by comparing the
restored image Ir with the clean ground truth image Igt, as
follows:

Lrec =
1

N

N∑
i=1

∥I(i)r − I
(i)
gt ∥1,

LFFT =
1

N

N∑
i=1

∥FFT(I(i)r )− FFT(I(i)gt )∥1.

(4)
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