
EEGMirror: Leveraging EEG data in the wild via Montage-Agnostic
Self-Supervision for EEG to Video Decoding

Supplementary Material

7. More Dataset Information
We used the SJTU EEG Dataset for Dynamic Vision
(SEED-DV) [31] for all experiments. This dataset consists
of high-temporal-resolution EEG records collected from 20
healthy adult subject (10 males and 10 females). Each Sub-
ject watched 7 video blocks and each block contains 5 video
clips for each 40 concept, resulting in 1400 EEG-video pairs
in total. The 40 concepts investigated in SEED-DV cover
9 coarser classes: {land animal, water animal, plant, exer-
cise, human, natural scene, food, musical instrument, trans-
portation}. Consequently, for each concept, there is 7 × 5
EEG-video pairs, we use the first 6×5 pairs for training and
the last 5 pairs for testing.

8. Implementation Details
8.1. EEG Signals Preprocessing
SEED-DV dataset. The raw data was recorded with the
62-channel EEG cap with a sample rate of 1000 Hz and
stored in the continuous EEG data file format (.cnt), a sin-
gle file for the experiment of each subject. We applied the
0.1-100 Hz band-pass filter to filter out the DC interference
and very high-frequency interference and down-sampled
the EEG data to 200Hz to accelerate computations.

Other EEG dataset. We use the same processing
method as LaBraM [18]. We apply minimal yet essential
preprocessing steps to the EEG signals. First, the signals
are filtered between 0.1 Hz and 75 Hz to eliminate low-
frequency noise. Next, a 50 Hz notch filter is applied to
mitigate power-line interference. The EEG signals are then
resampled to 200 Hz. Since EEG values typically range be-
tween -0.1 mV and 0.1 mV, we normalize the data by scal-
ing the unit to 0.1 mV, ensuring the values predominantly
fall within the range of -1 to 1.

8.2. Implementation Details
We reconstruct a two-second video clip from the corre-
sponding two-second EEG segment. For efficient training
and testing, we down-sampled the 24 FPS 1080p original
videos to a small video of resolution of 512 × 288 (16:9)
with 3 FPS, resulting in 6 frames for each video. We use the
first 6 blocks from all the sessions as the training set and the
last blocks as the testing set in our experiment. The inflated
video generation model is fine-tuned using the same setting
in [59] on the training set with learning rate of 0.00003 and
cosine scheduler for 200 epochs, which takes about 5 hours.
The inference is performed with 100 DDIM [44] steps.

9. Ablation Study: Visual Resutls
Visual results of the ablation studies are shown in Fig. 8.
The Full model is pretrained on all datasets and finetune
with contrastive loss. In contrastive learning ablation, we
finetuned our model without contrastive loss. Similar to the
numeric evaluations, using incomplete loss function gave
an suboptimal results compared to full model, because the
color of the cat cannot be recovered satisfactorily. How-
ever, without brain encoder, our method generated visually
meaningless results.

10. Fail Cases
Some failure samples are displayed in Figure 9. These fail-
ures are typically caused by the inability of the model to
infer either the semantic information or the low-level vi-
sual information correctly, resulting the irrelevantly gener-
ated videos. However, we can still see from these failed
examples that the model reconstructs some features of the
real video, like scenes and colors. For example, a turtle in
the sea was recovered as a shark in the sea.

11. Broader Impacts
Reconstructing dynamic visual perception from brain ac-
tivity advances our understanding of the brain’s visual sys-
tem. EEG, a physiological signal widely used in clinical
practice and brain-computer interfaces, offers a portable
and cost-effective alternative to non-portable and expensive
neuroimaging techniques like fMRI and MEG. Our work
provides a convenient and affordable solution for decoding
visual information from brain activity, enabling the visual-
ization of mental processes. This technique offers a novel
approach to exploring the inner world of patients with men-
tal illnesses such as autism and depression. However, this
technology also raises concerns. Personal privacy could be
compromised if brain activity data is accessed and exploited
by malicious actors to ”read minds” from EEG signals with-
out consent. To address this, governments and medical in-
stitutions must establish stricter regulations to safeguard the
privacy of individuals’ biological data.

12. Limitations
Our framework has been evaluated under subject-dependent
settings, but its cross-subject applicability remains unex-
plored due to individual variations. Future work could focus
on enhancing the transferability of the framework.
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Figure 8. Reconstruction samples for ablation studies. The Full model uses full modality contrastive learning and pretrain on all datasets.
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Figure 9. Fail cases.
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