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Limitations and Social Impact. First, we are mindful of
privacy concerns related to face datasets, and all data col-
lection and sharing adhere to relevant privacy policies. Sec-
ond, while the maximum resolution in our dataset is limited
to 1024 pixels, we recognize that future work may incorpo-
rate higher-resolution images as generative models continue
to advance.

1. FaceQ: Dataset Construction

1.1. Face Generation, Customization and Restora-
tion Models

Model Implementation Details. Tab. 1 provides a com-
prehensive summary of models evaluated for face gener-
ation, editing, and restoration, including the model links,
released dates, the resolution, and the backbone architec-
tures. (1) Face generation. All the generation models are
inference by pre-trained checkpoints in their default resolu-
tions and hyper-parameters. Specifically, Stable Diffusion
V1.5 [19], DreamLike [2], and RealisticVision [8] support
high-resolution generation, such as 1024× 1024, but we uti-
lize their default training resolution due to severe subject
repetition phenomenon. Deep Floyd [1] is a 3-stage pixel
space diffusion model, here we only consider the third-
stage results. For the dynamic step sampling, the number of
steps per stage for StableCascade [17] and Deep Floyd [1]
is reduced to the quarter. Each model’s negative prompt
is configured to exclude “anime” and “semi-realistic” out-
puts by using terms like “worst quality”, “low quality”, “il-
lustration”, “3D”, “2D”, “painting”, “cartoons”, “sketch”,
“anime”, “animation”, “cartoon”, and “semi-realistic”. Safe
sensors are enabled to filter out NSFW content. (2) Face
customization. All the customization models are inference
by pre-trained checkpoints in their default resolutions and
hyper-parameters. FastComposer [31], originally designed
for multi-subject customization, is assessed here with a sin-
gle reference image as input. We use the IP-Adapter re-
lease version, including IP-Adapter-FaceID-SDXL [4] and
IP-Adapter-FaceID-PlusV2 [5] (referred to as IP-Adapter-
FaceID and IP-Adapter-FaceID-Plus). Their backbones are

SDXL and SD-v1.5, respectively. (3) Face restoration. For
DR2 [29], we follow the hyperparameter settings recom-
mended in the original paper: N = 4, T = 35 for real-
world inputs and N = 8, T = 35 for synthetic inputs.

Table 1. Summary of 29 face generation, customization and
restoration models.

Category Model Year Resol. Backbone

Face
Generation

Stable Diffusion V1.5 [19] 2022.04 5122 Latent Diffusion
Stable Diffusion V2.1 [19] 2022.12 10242 Latent Diffusion
DreamLike V2.0 [2] 2023.01 7682 Latent Diffusion
Deep Floyd [1] 2023.04 10242 Pixel Diffusion
SD-XL [18] 2023.06 10242 Latent Diffusion
PixArt-alpha [11] 2023.11 10242 Latent Diffusion (DiT)
Realistic Vision V5.1 [8] 2023.12 5122 Latent Diffusion
Stable Cascade [17] 2024.02 10242 Latent Diffusion
Playground V2.5 [13] 2024.02 10242 Latent Diffusion
ProtoVision V6.6 [7] 2024.03 10242 Latent Diffusion
Hunyuan [15] 2024.05 10242 Latent Diffusion (DiT)
SD3 [9] 2024.07 10242 Latent Diffusion (DiT)
Kolors [6] 2024.07 10242 Latent Diffusion
Flux-dev [3] 2024.08 10242 Latent Diffusion (DiT)

Face
Customization

ELITE [30] 2023.02 5122 Latent Diffusion
FastComposer [31] 2023.05 5122 Latent Diffusion
IP-Adapter-FaceID [4] 2023.12 5122 Latent Diffusion
InstantID [25] 2023.12 5122 Latent Diffusion
IP-Adapter-FaceID-Plus [5] 2023.12 5122 Latent Diffusion
PhotoMaker [14] 2023.12 5122 Latent Diffusion

Face
Restoration

SPARNet [10] 2020.12 5122 GAN
GPEN [32] 2021.05 5122 GAN
GFPGAN [27] 2021.06 5122 GAN
CodeFormer [34] 2022.08 5122 VQ
VQFR [12] 2022.07 5122 VQ
DifFace [33] 2022.12 5122 Pixel Diffusion
DR2 [29] 2023.05 5122 Pixel Diffusion
DiffBIR [16] 2023.08 5122 Latent Diffusion
StableSR [24] 2024.06 5122 Latent Diffusion

Prompt Examples. The face-centric prompts used for
face generation can be categorized into nine classes. Tab. 2
presents two example prompts for each category due to
space constraints. We ensured equal numbers of prompts
for male and female subjects. The prompts for face cus-
tomization are a subset of those used for face generation.
Degradation Scheme. We construct two synthetic degra-
dation pipelines to mimic real-world degradation. The first
is first order pipeline following previous works [10, 28, 29]
which can be expressed as

Id = [(I ⊛ kσ) ↓r +nδ]JPEGq
(1)



Table 2. Several examples of prompts for nine categories.

Category Prompt Examples

General
a photo of a woman
a photo of a middle-eastern man

Clothing
a woman wearing a purple wizard outfit
a man wearing a hoodie with green stripes

Accessory
a man with black hair styled in a top bun
an old woman with a vintage hairpin

Action
a woman coding in front of a computer
a man playing the violin

Expression
a man crying disappointedly, with tears flowing
a woman looking shocked, mouth wide open

Background
a woman laughing on the lawn
a young woman with a colorful umbrella stands
near a crowd

View
a man wearing a doctoral cap, upper body, with
the left side of the face facing the camera
a man playing the guitar in the view of left side

Style

instagram photo, portrait photo of a man, per-
fect face, natural skin, hard shadows, film grain
editorial portrait of a man posing dramatically,
sharp lighting, fashion magazine style

Facial
Attributes

a young girl with large round blue eyes, a flat
nose bridge, and purple lipstick
A man with narrow black eyes, a high nose
bridge, a thick beard, and fair skin

High-quality images are degraded through a series of opera-
tions, including blurring, downsampling, additive Gaussian
noise, and JPEG compression, with respective probabilities
of 70%, 100%, 20%, and 70%. The blur kernel is randomly
selected from Gaussian, Average, Median, and Motion blur.
The interpolation method is randomly selected from Near-
est, Linear, Area, and Cubic interpolation. The downsam-
pling scale factor is randomly chosen from 4, 8, or 16. The
second is a second-order degradation pipeline from previ-
ous work [26].

x = Dn(y) = (Dn ◦ · · · ◦ D2 ◦ D1)(y). (2)

Blur, resizing, noise, and JPEG compression are conducted
in several orders, along with a sinc filter to simulate com-
mon ringing and overshoot artifacts. We used these two
pipelines to generate 50% and 50% of the synthetic low-
quality images, respectively.

1.2. Additional Examples of FaceQ Database
Figure 1, Figure 2, and Figure 3 present additional examples
from the FaceQ-Gen, FaceQ-Cus, and FaceQ-Res subsets,
respectively. Each row corresponds to a specific generative
model, showcasing the extensive diversity of content cov-
ered by the FaceQ dataset.

1.3. Quantitative Analysis of FaceQ Database
We selected four low-level features—brightness, contrast,
colorfulness, and sharpness—to quantitatively assess the
content diversity of the FaceQ database. Fig. 4 illus-
trates the kernel distribution curves for each selected fea-
ture across the three subsets. The results indicate that the
images in each subset exhibit a wide range of contrast, col-
orfulness, and sharpness. However, the FaceQ-Cus subset
demonstrates a narrower distribution in terms of brightness
compared to the other subsets. We further calculate the rela-
tive range Rk

i and coverage uniformity Uk
i of the three sub-

sets across these selected features. The relative range Rk
i is

defined as:

Rk
i =

max(Ck
i )−min(Ck

i )

maxk(Ck
i )

, (3)

where Ck
i denotes the distribution of kth dataset on ith fea-

ture. maxk(C
k
i ) refers to the maximum value of ith feature

across all datasets. The coverage uniformity Uk
i is calcu-

lated as the entropy of the B-bin histogram of Ck
i for each

subset, using the following formula:

Uk
i = −

B∑
b=1

pblogBpb, (4)

where pb denotes the normalized number in bin b at ith fea-
ture for kth dataset. Fig. 5 presents a quantitative compari-
son of uniformity and relative range. A higher coverage uni-
formity indicates a more uniform feature distribution within
the database, while a higher relative range reflects greater
intra- and inter-dataset differences. It can be observed that
all three subsets exhibit a diverse range and a uniform dis-
tribution across the four low-level features.

2. FaceQ: Subjective Experiments
2.1. Implementation Details
Fig. 6 presents screenshots of the user rating interfaces for
the four tasks. In the generation task, as shown in Figure 6
(a), participants are asked to rate images on a scale of 0
to 5 based on quality, authenticity, and correspondence.
Prompts are displayed beneath the candidate images, ac-
companied by translations into the participants’ native lan-
guages. In the customization task, as shown in Fig. 6 (b),
the reference image is displayed on the left, with prompts
and translation shown below. In Fig. 6 (c), the candidate
image appears on the left, while the corresponding low-
quality reference image is on the right. In Figure 6 (d), both
the low-quality image and the ground truth are displayed in
synthetic scenarios. Each subset in FaceQ was randomly
divided into four groups, each containing approximately
1,000 images. Participants were compensated $14 for com-
pleting each group of experiments according to [21]. At
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Figure 1. FaceQ-Gen Examples.
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Figure 2. FaceQ-Cus Examples.

last, 3% invalid data are removed and no subject is removed.

2.2. Subjective Evaluation Examples

Fig. 7 provides a visual supplement to the 3D scatter plots
described in the main submission. Fig. 7 (a) presents the
3D scatter plot for the FaceQ-Gen subset, showcasing five
representative edge points. These images, ranked from
top to bottom, correspond to overall good, low correspon-
dence, low authenticity, low quality, and overall bad. As
illustrated, the MOS scores effectively and intuitively cap-
ture the strengths and weaknesses of the images, accurately
reflecting human preferences across different dimensions.
Similarly, Fig. 7 (b) depicts the 3D scatter plot for the
FaceQ-Cus subset, highlighting another set of five repre-
sentative points. These images, ranked from top to bot-
tom, correspond to overall good, low correspondence, low
identity correspondence, low quality, and overall bad. The
MOS score demonstrates a significant decline in dimen-

sions where the image exhibits poor performance. This ob-
servation further substantiates the reliability and validity of
human scoring in reflecting image quality across multiple
dimensions.

3. F-Bench: More Analysis

3.1. MOS Distribution

Fig. 8 illustrates the MOS distributions of all fourteen face
generation models across the dimensions of quality, authen-
ticity, and correspondence, for both full-step and 1/4-step
performances. The full-step distribution plots provide a
comprehensive view of the performance distribution for dif-
ferent methods across the three dimensions, enabling a de-
tailed evaluation of each method’s effectiveness. In the 1/4-
step distribution plots, it can be observed that models such
as Stable Cascade [17], SDXL [18], and Pixart-alpha [11]
exhibit high sensitivity to the reduction in step size. In
contrast, models such as Flux[3] and RealisticVision[8]
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Figure 3. FaceQ-Res Examples.

demonstrate relatively stable performance with minimal
degradation when reducing the steps. Fig. 9 illustrates the
MOS distributions for six face customization models across
three dimensions: quality, identity fidelity, and correspon-
dence. Significant variations can be observed among dif-
ferent models and dimensions, highlighting distinct perfor-
mance characteristics. Fig. 10 illustrates the MOS distri-
butions for all nine face restoration models across the di-
mensions of quality and identity fidelity, evaluated for both
real-world and synthetic cases. Most models exhibit vary-
ing performance between real-world and synthetic inputs,

resulting in noticeable differences in their distributions, as
exemplified by SPARNet [10].

3.2. Perspectiive Analysis
To provide a clearer comparison of the strengths and weak-
nesses of different methods, we present the average MOS
scores across various dimensions in Figure 11. For the
three dimensions of face generation, authenticity exhibits
the largest disparity between methods, while correspon-
dence and quality tend to cluster around higher scores. In
the face customization task, the methods show inconsistent
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Figure 4. Comparisons of the selected four low-level feature distributions calculated on proposed FaceQ dataset.
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Figure 5. Comparisons of the selected four low-level features calculated on the proposed FaceQ dataset. (a) Coverage uniformity. (b)
Relative range.
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Figure 6. Screenshots of the rating interface for human evaluation. (a) Face generation evaluation interface. (b) Face customization
evaluation interface. (c) Face restoration (real world) evaluation interface. (d) Face restoration (synthetic) evaluation interface.
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Figure 7. Additional visualizations of the 3D scatter of MOSs. We sample five representative points from the scatter and visualize their
MOS scores across three dimensions. Each dimension is represented by a different color. The relatively low dimensions are underlined.
(a) Face generation. (b) Face customization.

performance in correspondence, whereas quality remains
relatively balanced. For face restoration, quality-synthetic
emerges as the easiest metric to achieve high scores, fol-
lowed by quality-real-world. Figure 12 displays the rank-
ings of the various methods. For face generation, Flux [3]
achieves the highest performance across all three dimen-

sions. When considering authenticity, RealisticVision [8]
and SD3 [9] outperform other methods. Playground [13]
ranks second only to Flux [3] in terms of correspondence,
while Kolors [6] and SD3 [9] follow Flux [3] in quality. On
the other hand, SDv1.5 [? ] performs the worst across all
dimensions. For face customization, IP-Adapter-FaceID-
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Figure 8. MOS distribution histograms and kernel density curves across different face generation models. “full steps”contains images
generated in default sampling steps and “1/4 steps”contains the images generated by one-quarter of the default steps.
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Figure 9. MOS distribution histograms and kernel density curves across different face customization models.

Plus [5], InstantID [25], and PhotoMaker [20] excel at pre-
serving identity information. For face restoration, Code-
Former [34] demonstrates the best performance in synthetic
scenarios, while StableSR achieves the highest scores in
real-world scenarios.

3.3. Class-wise Comparison
Age. Figure 13 presents the multi-dimensional MOS dis-
tributions across three age groups (Young, Middle-aged,
and Old) for face generation, face customization, and face
restoration tasks. In the face generation task, the perfor-
mance across age groups is relatively consistent across all
dimensions. For face customization, more pronounced dif-
ferences are observed, particularly in the quality scores,
where older individuals exhibit larger variability. In the face

restoration task, quality scores for old individuals are no-
tably higher compared to middle-aged and young groups,
while identity fidelity remains relatively consistent. These
results highlight that face generation models are less sensi-
tive to age-related factors, whereas face customization and
restoration models demonstrate noticeable performance dis-
parities among age groups, especially in dimensions such as
ID Fidelity and Quality. The age and gender of the images
are labeled InsightFace.

Gender. We visualize the distribution of MOS scores in
three dimensions for men and women in each dimension in
Fig. 14. It can be found that the male and female categories
in face generation and face customization perform consis-
tently across all evaluation dimensions, with minimal vari-



GPFGEN (synthetic) 

CodeFormer (real world) 

GPEN (real world) 

CodeFormer (synthetic) 

GPEN (synthetic) 

DifFace (real world) 

SPARNet (real world) 

DifFace (synthetic) 

SPARNet (synthetic) 

DiffBIR (real world) 

StableSR (real world) 

DiffBIR (synthetic) 

StableSR (synthetic) 

DR2 (real world) 

VQFR (real world) 

DR2 (synthetic) 

VQFR (synthetic) 

GFPGEN (real world) 

Figure 10. MOS distribution histograms and kernel density curves across different face restoration models. “synthetic”refers to
images restored from the synthetic low-quality inputs while “real world”refers to the images restored from real-world low-quality inputs.
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Figure 11. Comparison of averaged MOS of different models across Quality,Authenticity, ID Fidelity, and Correspondence. (a) Face
generation models. (b) Face customization models. (c) Face restoration models.

ability observed. However, when it comes to face restora-
tion tasks, the quality and identity fidelity of the male class
are better. This suggests that generation and customization
models trained on extensive datasets exhibit less gender bias
than restoration models trained on smaller datasets.

4. QA Methods Implementation Details
4.1. Evaluation Metrics
We adopt three widely used metrics in IQA [22, 23]: Spear-
man rank-order correlation coefficient (SRCC), Pearson lin-
ear correlation coefficient (PLCC), and Kendall rank corre-
lation coefficient (KLCC) to evaluate the performance of
quality assessment methods.
SRCC., which ranges from -1 to 1, evaluates the mono-
tonic relationship between two variables. For N images, it
is computed as:

SRCC = 1−
6
∑N

n=1 (vn − pn)
2

N(N2 − 1)
, (5)

Here, vn represents the rank of the ground truth value
yn, while pn corresponds to the rank of the predicted value
ŷn. When the SRCC value is higher, it signifies a stronger
monotonic agreement between the ground truth and the pre-

dicted scores.
PLCC. quantifies the linear correlation between predicted
scores and ground truth scores and is formulated as:

PLCC =

∑N
n=1 (yn − ȳ)(ŷn − ¯̂y)√∑N

n=1 (yn − ȳ)
2
√∑N

n=1 (ŷn − ¯̂y)
2
, (6)

where ȳ and ¯̂y denote the mean values of the ground truth
scores and the predicted scores, respectively.
KLCC. measures the ordinal association between two mea-
sured quantities and is defined as:

KLCC =
2(C −D)

N(N − 1)
, (7)

where C is the number of concordant pairs and D is the
number of discordant pairs among all possible pairs of N
data points. A higher KLCC indicates a stronger rank cor-
relation between the two variables. Together, these metrics
provide a comprehensive evaluation of the relationship be-
tween predicted preference scores and ground truth MOS
values across different aspects of correlation.
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Figure 12. Comparison of different model rankings based on the averaged MOS (a) Face generation models. (b) Face customization
models. (c) Face restoration models.
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Figure 13. Comparison of multi-dimensional MOS distributions across age groups. “Authen.”, “Corres.”and “ID Fide.”denote Au-
thenticity, Correspondence, and ID Fidelity respectively. (a) Face generation models. (b) Face customization models. (c) Face restoration
models.

5. More Details of Our F-Eval Model
5.1. Loss Funtion
We use both language loss, L1 loss and cross-entropy loss as
the loss functions to optimize the training process. Specifi-
cally, the language loss is used to restrict the F-Eval to pro-
duce specific quality-related answer patterns. The language
loss function can be formulated as:

Llanguage = − 1

N

N∑
i=1

logP (ylabel|ypred) (8)

where ypred is the predicted token, ylabel is the ground
truth token, P (ylabel|ypred) indicates the probability, and N
is the number of tokens.
L1 loss is used to regress the quality scores. The L1 loss
can be formulated as:

L1 =
1

N
|qpred − qlabel| , (9)

where qpred is the predicted quality score, qlabel is the ground
truth quality score, and N is the number of images in a
batch.

Cross-entropy loss to predict the dimension ID from the in-
put text tokens. The cross-entropy loss can be formulated
as:

LCE = − 1

N

N∑
i=1

C∑
c=1

yi,c log(pi,c), (10)

where yi,c is the dimension label for the i-th sample in class
c (dimension ID), pi,c is the predicted probability for the i-
th sample in class c, and N N is the number of images in a
batch. C is 4. The overall loss function can be formulated
as:

L = Llanguage + L1 + LCE, (11)

5.2. Failure Cases
F-Eval’s performance may degrade when the face region in
the image is either too small or in an extreme side view.
In these scenarios, the face features extracted by the face
encoder become less accurate, leading to a drop in perfor-
mance, particularly in the quality and authenticity dimen-
sions. We will address this limitation by integrating a more
robust face encoder fine-tuned on side view and small face
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Figure 14. Comparison of multi-dimensional MOS distributions across genders. “Authen.”, “Corres.”and “ID Fide.”denote Authentic-
ity, Correspondence, and ID Fidelity respectively. (a) Face generation models. (b) Face customization models. (c) Face restoration models.

Table 3. Complete results in the ablation study.

Task Face Generation Face Restoration syn
Dimension Quality Authenticity Correspondence Quality ID Fidelity

Method SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑
Freeze Projector 0.8080 0.6428 0.8698 0.7518 0.5832 0.8123 0.8475 0.6783 0.9031 0.7769 0.5787 0.8074 0.7757 0.5832 0.8074
Freeze Face encoder 0.8151 0.6450 0.8733 0.7524 0.5834 0.8140 0.8347 0.6654 0.8912 0.8121 0.6120 0.8430 0.7828 0.6021 0.8341
Single LoRA 0.7927 0.6140 0.8659 0.7757 0.5995 0.8285 0.8191 0.6429 0.8760 0.8377 0.6538 0.8874 0.8228 0.6341 0.8556
Task LoRA 0.8231 0.6477 0.8895 0.7803 0.6056 0.8317 0.8377 0.6661 0.8943 0.8244 0.6428 0.8806 0.8257 0.6359 0.8519
F-Eval (Ours) 0.8486 0.6670 0.9085 0.8312 0.6585 0.8578 0.8471 0.6637 0.9106 0.8692 0.6855 0.9009 0.8507 0.6731 0.8726

Task Face Customization Face Restoration rw
Dimension Quality Authenticity Correspondence Quality ID Fidelity

Method SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑
Freeze Projector 0.9242 0.7651 0.9233 0.9269 0.7679 0.9242 0.8429 0.6726 0.8386 0.7067 0.5249 0.7114 0.4778 0.3616 0.5451
Freeze Face encoder 0.9239 0.7662 0.9217 0.9214 0.7612 0.9208 0.8550 0.6836 0.8524 0.7158 0.5421 0.8532 0.6028 0.4386 0.6898
Single LoRA 0.9419 0.7938 0.9421 0.9424 0.7957 0.9430 0.8850 0.7140 0.8974 0.8019 0.6155 0.8455 0.6710 0.5017 0.7768
Task LoRA 0.9421 0.7984 0.9403 0.9422 0.7985 0.9402 0.8727 0.7005 0.8918 0.7540 0.5661 0.7964 0.6376 0.4736 0.7403
F-Eval (Ours) 0.9462 0.7961 0.9461 0.9188 0.7640 0.9322 0.9460 0.7959 0.9457 0.8448 0.6577 0.8705 0.7957 0.6057 0.8366

data in future works. Additionally, F-Eval currently does
not support identifying specific distorted regions, which
will also be addressed in future works.

5.3. More Experimental Results
The detailed ablation study results are listed in Tab. 3. The
results indicate the effectiveness of the key components in
our F-Eval.
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