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Supplementary Material

A. More Implementation Details
4D-GS Network. 4D Gaussian Splatting (4D-GS) [12]
lies in extending static 3D Gaussian primitives [4] to dy-
namically model temporal-spatial scenes. In 3D-GS [4],
a scene is represented by a set of anisotropic Gaussians
G = {gi}Ni=1, where each Gaussian gi is parameterized by
its position µi ∈ R3, rotation (quaternion qi ∈ R4), scale
si ∈ R3, and opacity αi ∈ [0, 1]. The covariance matrix Σi

is derived from qi and si, enabling differentiable rendering
via splatting.

To model 4D dynamics, each Gaussian is further aug-
mented with time-varying parameters. For temporal co-
herence, we parameterize the trajectory of gi over time t
through a deformation function ∆ : R4 → R9:

[∆µi(t),∆qi(t),∆si(t)] = ∆(µi, qi, si, t), (1)

where ∆ can be implemented via MLPs or explicit
keyframe interpolation. The interpolated Gaussian gi(t)
at time t is then rendered following the 3D-GS rendering
pipeline, but with all parameters conditioned on t. Op-
timization typically requires multi-view RGB videos with
camera poses. While achieving real-time dynamic render-
ing (30+ FPS), 4D-GS depends heavily on consistent multi-
view video supervision.
Training Setup. We adopt the 4D representation proposed
in [12]. Our hyperparameter settings mainly follow those
in [12]. The learning rate is initialized at 1.6 × 10−3 and
gradually decays to 1.6× 10−4 by the end of training. The
Gaussian deformation decoder, implemented as a tiny MLP,
starts with a learning rate of 1.6 × 10−4, which is reduced
to 1.6× 10−5 over time. The training batch size is set to 1.
During the coarse stage, we train for 9k iterations, followed
by an additional 1k iterations in the fine stage. The λ used in
the fine-stage loss is 0.1. In modulation-based refinement,
T̄ is set to 5 to improve efficiency, and wi linearly decreases
from 0.5 to 0. Viewcrafter [15] uses its default denoising
steps, which is 50. The guidance scale s used in CFG is
the default value 7.5. For multi-view image generation at
the first timestamp t = 1, we use adaptive CFG. For t > 1,
CFG is disabled because the reference information from the
multi-view generation at t = 1 has already been introduced
into the missing regions. All experiments are conducted on
a single NVIDIA A100 (40GB) GPU.

B. Details of User Study
User Study I: Comparison with Other Methods. We con-
ducted the first user study to compare our method with other

existing methods. Since the source codes of these methods
were not publicly available, we compared our method with
the videos provided on their respective project pages. A to-
tal of 32 pairs of videos were used in this study. Each pair
was generated from the same input images or text prompts
to ensure a fair comparison. The methods included in this
study were 4Real [14], 4Dfy [1], Dream-in-4D [19], Di-
mensionX [8], GenXD [18], and Animate124 [17]. The
user study was conducted online, and a screenshot of the in-
terface is shown in Fig. A. Participants were asked to evalu-
ate the generated videos based on four criteria: Consistency,
Dynamic, Aesthetic, and Overall. For each pair of videos,
they were required to select which method performed bet-
ter for each criterion. They could skip to the next example
without selecting if they found it difficult to judge. The user
study was conducted anonymously, and no personally iden-
tifiable data were collected.
User Study II: Ablation Study. The second user study
evaluated the impact of our method’s different components
through an ablation experiment. The components included
in this study were Monst3R, Adaptive CFG, Point Cloud
Guided Denoising, Reference Latent Replacement, Refer-
ence Latent Replacement, Coarse-to-fine optimization, and
Modulation-based Refinement. For each component, we
randomly sampled 10 different scenes and generated video
pairs using the full version of our method and a variant with
the specific component removed or modified. Participants
were asked to evaluate the generated video pairs based on
the same four criteria as in User Study I: consistency, aes-
thetics, motion dynamic, and overall quality. The ablation
study was also conducted anonymously, without collecting
any personally identifiable data.

C. Details of VBench Metrics

To evaluate the quality of multi-view videos rendered from
4D representations, we report common VBench [3] met-
rics: Consistency (average for subject/background), Dy-
namic Degree, Aesthetic Score, and Text Alignment (only
for text-to-4D).
Subject / Background Consistency. To evaluate the con-
sistency of both subjects (e.g., a person, car, or cat) and
background scenes in the video, VBench uses DINO [2] and
CLIP [6] feature similarities across frames. DINO captures
subject consistency by comparing frame embeddings, while
CLIP assesses background stability. Together, they provide
a comprehensive measure of consistency.
Dynamic Degree. Since a static video can score well in the
aforementioned consistency metrics, it is important to eval-
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Figure A. The web interface of our user studies. The input
prompt can be either a single image or a short text.

uate the degree of dynamics (i.e., whether it contains large
motions). To this end, the Dynamic Degree metric uses
RAFT [9] to estimate the degree of dynamics in synthe-
sized videos. Specifically, this metric takes the average of
the largest 5% optical flows (considering the movement of
small objects in the video). This approach ensures that mi-
nor movements (e.g., small objects or slight camera shakes)
do not disproportionately influence the overall dynamic as-
sessment.
Aesthetic Score. We evaluate the artistic and beauty value
perceived by humans towards each video frame using the
LAION Aesthetic Predictor [5]. This predictor is a linear
model built on top of CLIP embeddings, trained to assess
the aesthetic quality of images on a scale from 1 to 10. It
reflects various aesthetic aspects, including the layout, rich-
ness and harmony of colors, photo-realism, naturalness, and
overall artistic quality of the video frames. The Aesthetic
Score metric obtains a normalized aesthetic score by apply-
ing this predictor to each frame.
Text Alignment. This metric uses overall video-text con-
sistency computed by ViCLIP [11] on general text prompts
as an aiding metric to reflect text semantics consistency. Vi-
CLIP is a video-text contrastive learning model that lever-
ages a large-scale video-text dataset to learn robust and
transferable representations.

D. Runtime Analysis
The runtime comparison is shown in Table A. We compare
our approach with object-level methods [1] and the text-
to-4D scene generation method [14]. Since [8] and [18]
have not reported runtime details (including feed-forward
inference time and 4D representation optimization time) or
released their code, they are excluded from the compari-
son. Notably, compared to previous methods, our approach

Method Time Resolution Frames Views

4Dfy [1] 10h+ 256×256 - -
4Real [14] 1.5h 256×144 8 16

Ours 1h 1024×576 16 25

Table A. Comparison of runtime with other methods. Frames
and Views represent the number of video frames and the number
of viewpoints, respectively. The running time of Structure from
Motion (SfM), such as colmap [7], is not included due to signifi-
cant variations across different scenes.

(a1) Point-RGB (a2) Point-Mask (a3) w/o PGD (a4) w/ PGD

(b1) Point-RGB (b2) Point-Mask (b3) w/o Ad-CFG (b4) w/ Ad-CFG

(c1) VDM (c2) ViewCrafter (c3) w/o RLR (c4) w/ RLR

Figure B. Failure cases of our proposed PGD / Ad-CFG / RLR.

supports higher resolutions while efficiently handling more
frames and viewpoints, achieving the fastest optimization.
Our total runtime is composed of three main steps: run-
ning MonST3R (1 min), generating multi-view videos with
ViewCrafter (25 min), and optimizing 4D-GS (35 min).

E. Discussion
Clarification on Tuning-free. Our “tuning-free” means
no fine-tuning is applied to foundation models (e.g.,
ViewCrafter [15]) during multi-view video generation. This
efficient design avoids the expensive cost of tuning (e.g.,
GenXD [18] uses 32 A100s for several days). Instead, the
final 4DGS optimization is lightweight, scene-specific, and
runs on a single GPU within 30 minutes.
Necessity of 4DGS. 1) Task: Our goal is to generate ex-
plicit 4D representations, following 4Real [14]. 2) Con-
sistency: The 4DGS stage is essential for spatial-temporal
consistency (see our project page). 3) Application: Be-
yond discrete multi-view videos from diffusion models,
4DGS offers a continuous spatial-temporal representation,
enabling real-time rendering and interactivity.
4D Evaluation. For a thorough 4D assessment, we dis-
entangle and separately evaluate temporal and spatial di-
mensions in Table B. 1) C-T/V↑: VBench consistency ap-
plied to time-/view-variant videos, following SV4D [13].
2) #PC↑: number of 3D points reconstructed by COLMAP
from view-variant frames, indicating spatial consistency. 3)



Method C-T C-V #PC FWE Method C-T C-V #PC FWE

4Real 98% 96% 7k 3.3 D-in-4D 98% 91% 5k 4.6
Ours 98% 97% 53k 2.4 Ours 98% 97% 47k 2.3

4Dfy 99% 91% 4k 4.0 Ani124 95% 93% 0.1k 4.9
Ours 99% 97% 45k 2.2 Ours 98% 98% 109k 2.9

DimX 97% 92% 3k 4.1 GenXD 97% 90% 1k 5.3
Ours 97% 96% 4k 2.6 Ours 98% 97% 47k 4.2

Table B. Disentangled evaluation on temporal / spatial dimension.

Flow Warping Error (FWE)↓: measures inter-frame dif-
ference after flow warping, reflecting temporal consistency.
All methods are evaluated under the same settings (e.g., res-
olution and video length). Our method shows better spatial-
temporal consistency despite greater dynamics.

F. Limitations and Future Work

Limitations. We show failure cases of our proposed PGD /
Adaptive CFG / RLR in Fig. B. 1) Point-Guided Denoising
(PGD): While PGD (a4) reduces unintended dynamics in
frozen-time videos compared to (a3), the fire (a4) appears
unnatural due to inaccurate depths (a1) under blurry in-
put. 2) Adaptive CFG: It alleviates abrupt facial and lighting
changes (b3) yet minor facial inconsistencies remain (b4).
3) Reference Latent Replacement (RLR): When dynamic
regions are not fully captured in input view, VDM (c1) and
ViewCrafter (c2) may generate inconsistent content (e.g.,
airplane tail). In such cases, RLR causes discontinuities
(c4), while disabling it results in temporal flickering (c3).
Though imperfect, the proposed heuristics perform better.
Future Work. We recognize that the accuracy of
MonST3R [16]’s estimation of dynamic videos is crucial.
We observed that Dust3R [10] demonstrates better robust-
ness than MonST3R in some static scenes. Therefore, a po-
tential approach is to use Dust3R to estimate the geometry
of the first frame, and employ optical flow to link different
views during the subsequent 4DGS optimization.
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