
Frequency Domain-Based Diffusion Model for Unpaired Image Dehazing

Supplementary Material

In this supplementary material, Sec. A1 provides the mo-
tivation analysis of the reconstructed amplitude in the fre-
quency domain. Sec. A2 illustrates the detailed architec-
ture of the dehazing network and analyzes its efficiency.
Sec. A3 describes the detailed training and inference al-
gorithms. Sec. A4 highlights the advantages of using the
unpaired data training paradigm in this work. Sec. A5
and Sec. A6 describe the dataset used and the training de-
tails, respectively. Sec. A7 analyzes the limitations of our
method. Finally, Sec. A8 shows more quantitative and qual-
itative comparison results.

A1. Motivation Analysis

As described in Sec. 1 of the main paper, the illumination
contrast is manifested by the amplitude spectrum, while
the texture structure information is manifested by the phase
spectrum. Haze mainly affects the illumination contrast,
while the structural information is immune to haze degra-
dation. That is to say, that haze degradation is transferred
with the exchange of the amplitude spectrum. Therefore,
the key motivation of our FrDiff is to make the diffusion
model (DM) reconstruct the amplitude of haze-free images
in the unpaired training setting.

To justify this motivation, we follow the assumption of
the classical dark channel prior [19], and analyze it by
studying the statistical properties of the dark channel before
and after the exchange of the amplitude spectrum. Specif-
ically, as shown in Fig. 2(a) of the main paper, we use the
FFT and IFFT operations to replace the amplitude spectrum
of the haze images (i.e., Hazy) with the amplitude spectrum
of the clear images (i.e., Clear) on the SOTS-Indoor [28]
dataset. By doing so, we can obtain a set of synthetic clear
images (i.e., SynClear). Then, we follow [28] using the
patch with the size of 15 × 15 to calculate their dark chan-
nels.

Fig. A1 shows several example images and the corre-
sponding dark channels. Figs. A1(a), (c), and (e) are the
Hazy images, the Clear images, and the SynClear images,
respectively. Figs. A1(b), (d), and (f) are their correspond-
ing dark channels. Visually, the intensity of the dark chan-
nel is a rough approximation of the thickness of the haze.
The dark channel of a Hazy image will have higher inten-
sity in regions with denser haze (see Fig. A1(b)). As the
amplitude spectrum of the Hazy image is replaced with the
amplitude spectrum of the Clear image, the dark channels
of the SynClear image are closer to the dark channels of
the Clear image (see Figs. A1(d) and (f)). This proves that
the data properties of the synthetic clear image are closer to
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Figure A1. Example images in SOTS-Indoor [28] dataset. (a),
(c), and (e) are the haze images (i.e., Hazy), the clear images
(i.e., Clear), and the synthetic clear images (i.e., SynClear), respec-
tively. (b), (d), and (f) are their corresponding dark channels. The
dark channel of the SynClear image is more similar to the Clear
image indicating that the replacement of the amplitude spectrum
is effective in removing the haze.

those of the clear image.
In addition, Figs. A2(a), (b), and (c) are the histogram of

the pixel intensities in all of the dark channels of the haze
images (i.e., Hazy), the clear images (i.e., Clear), and the
synthetic clear images (i.e., SynClear) in the dataset, re-
spectively. Figs. A2(d), (e), and (f) are the corresponding
histograms of the average intensity of each dark channel
(each bin stands for 16 intensity levels). We have the fol-
lowing observations:
• 1) The intensity of the pixels in the dark channel

of the Hazy images mostly falls between 50-200 (see
Fig. A2(a)). In contrast, the Clear and SynClear images
have mostly zero values and about 75 percent of the pixels
are below 25 (see Figs. A2(b) and (c)).

• 2) The average intensity of each dark channel of the
Hazy images also mostly falls between 100-150 (see
Fig. A2(d)), while the average intensity of each dark
channel for both Clear and SynClear images is below 100
(see Figs. A2(e) and (f)).

In general, this statistic not only provides very strong sup-
port for the dark channel prior [19], but also demonstrates
that the illumination contrast (e.g., Haze) is manifested by
the amplitude spectrum, and replacing the amplitude spec-
trum from the clear image can effectively remove the haze.

Therefore, this unique frequency domain property pro-
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Figure A2. Statistics of the dark channels. (a), (b), and (c) are the histogram of the pixel intensities in all of the dark channels of the haze
images (i.e., Hazy), the clear images (i.e., Clear), and the synthetic clear images (i.e., SynClear) in the dataset, respectively. (d), (e), and (f)
are the corresponding histogram of the average intensity of each dark channel (each bin stands for 16 intensity levels). The dark channel
statistics indicate that the synthetic clear image obtained by replacing the amplitude spectrum is closer to the clear image distribution.

vides inspiration for haze removal. Our key insight of
FrDiff, i.e., allowing DM to learn the amplitude of haze-
free images in the unpaired training setting, is justified and
has great potential.

A2. Architecture Details

As described in Sec. 3.1 of the main paper. To ensure the
non-local feature capture capability and the reconstruction
capability of the dehazing process, we adopt NAFNet [6], a
simple UNet-based architecture, as our dehazing network.

Specifically, we illustrate the detailed architecture of the
lightweight U-Net as shown in Fig. A3. The entire network
is based on the U-Net architecture. We follow the existing
approach [6] to extract features by stacking some NAFNet‘s
Blocks on each scale, where the number of basic blocks is
marked. In each scale, we also incorporate the Frequency
Compensation Layer (see Fig. 4(a) of the main paper) in the
contracting path (up-to-down) of UNet and input amplitude
residual z into these layers. The dehazed image is outputted
through the expanding path (down to up) of UNet. The pa-
rameters of the dehazing network are 8.69M.

In addition, we use a neural network consisting of 5
stacked ResBlocks, denoted as ϵθ, to estimate the noise.
The purpose of using ResBlocks as the denoising network
is to ensure the same resolution of inputs and outputs while
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Figure A3. Network structure of dehazing network.

minimizing the model parameters. The parameters of the
denoising network are 0.07M and the FLOPs required per
iteration is about 4.5G.

On 3090 GPU with 256 × 256 input, the runtime is
0.04s. Future we’ll further accelerate the denoising process
by one-step distillation.

A3. Algorithm

The first and second stage training algorithms for FrDiff are
shown in Alg. A1 and Alg. A2, respectively. The inference
algorithm for FrDiff is shown in Alg. A3.



Algorithm A1 FrDiff Training: Stage One
Input: ARE, dehazing network.
Output: Trained dehazing network.

1: for Ih, Ic do
2: z = ARE(Ih, Ic). (paper Eqs. (1)-(3))
3: Iout = DehazingNetwork(Ih, z)
4: Calculate Ls1 loss (paper Eq. (6)).
5: end for
6: Output the trained dehazing network.

A4. Advantages of Unpaired Training

The field of unsupervised training for image dehazing can
be divided into pseudo-label-based approaches [8, 9, 17, 47,
57] and unpaired training based approaches [7, 15, 33, 40,
41, 53, 54, 60].

The pseudo-label-based approaches [8, 9, 17, 47, 57] fo-
cus on mining and modeling the characteristics of real haze,
and usually improves its performance in real-world haze
scenarios by introducing an additional re-hazing pipeline.
However, the design of a reasonable pipeline critically
hinges on domain expertise. Without expert insights, the
performance of such methods may falter due to the inher-
ent challenges in capturing domain-specific characteristics.
In contrast, unpaired training-based approaches [7, 15, 33,
40, 41, 53, 54, 60] aims to directly learn the mapping of the
haze domain to the clear domain through tailored training
strategies, and thus more concise and promising.

A5. More Dataset Details

We evaluate our method on widely-used RESIDE [28], I-
HAZE [1], and Fattal’s [18] datasets, which cover syn-
thetic, artificial, and real-world images. Specifically, the
RESIDE [28] dataset contains several subsets: (a) ITS,
which contains 13,990 synthetic indoor hazy-clear pairs. (b)
SOTS-Indoor and SOTS-Outdoor, which contain 500 syn-
thetic indoor/outdoor hazy-clear pairs. (c) HSTS-Synth and
HSTS-Real, which contain 10 synthetic hazy-clear pairs
and 10 real-world hazy image without ground-truth images,
respectively. (d) URHI, which contains over 4,000 real hazy
image without ground-truth images. I-HAZE [1] dataset
contains 35 artificial hazy-clear pairs produced by profes-
sional haze generators. Fattal’s [18] dataset includes 31
real-world hazy images in various scenes.

For fair comparisons, we follow the previous works [54,
60] to use ITS dataset from RESIDE as the training set.
We validate the performance of FrDiff on synthetic data
using the SOTS-Indoor, SOTS-Outdoor, and HSTS-Synth
datasets with ground truth. We validate the performance
of FrDiff on real-world data using the HSTS-Real, Fattal’s,
and URHI datasets without ground truth.

Algorithm A2 FrDiff Training: Stage Two
Input: ARE, trained dehazing network,, denoising net-
work, βt(t ∈ [1, T ]).
Output: Trained denoising network, trained dehazing net-
work.

1: Init: αt = 1− βt, ᾱT =
∏T

i=0 αi.
2: Init: The dehazing network copies the parameters of

trained dehazing network.
3: for Ih, Ic do
4: z = ARE(Ih, Ic). (paper Eqs. (1)-(3))
5: Diffusion Process:
6: We sample zT by q (zT | z) =

N (zT ;
√
ᾱT z, (1− ᾱT ) I) (paper Eq. (7))

7: Denoising Process:
8: ẑT = zT
9: Ah = FFT(Conv-Block(Ih))

10: for t = T to 1 do
11: ẑt−1=

1√
αt
(ẑt − 1−αt√

1−ᾱt
ϵθ(ẑt, Ah, t))+

√
1−αtϵt

(paper Eq. (10))
12: end for
13: ẑ = ẑ0
14: Iout = DehazingNetwork(Ih, ẑ)
15: Calculate Ls2 loss (paper Eq. (11)).
16: end for
17: Output the trained denoising network and trained de-

hazing network.

Algorithm A3 FrDiff Inference
Input: Trained denoising network, trained dehazing net-
work, βt(t ∈ [1, T ]), hazy images Ih.
Output: Dehazed images Iout.

1: Init: αt = 1− βt, ᾱT =
∏T

i=0 αi.
2: Denoising Process:
3: Sample zT ∼ N (0, 1)
4: ẑT = zT
5: Ah = FFT(Conv-Block(Ih))
6: for t = T to 1 do
7: ẑt−1=

1√
αt
(ẑt− 1−αt√

1−ᾱt
ϵθ(ẑt, Ah, t))+

√
1−αtϵt (pa-

per Eq. (10))
8: end for
9: ẑ = ẑ0

10: Iout = DehazingNetwork(Ih, ẑ)
11: Output dehazed images Iout.

A6. More Training Details

During training, we follow existing works [10, 59] to adopt
a two-stage strategy to optimize our model.

As shown in Fig. 3(a) of the main paper, in stage one,
we utilize the proposed amplitude residual encoder (ARE)
to obtain amplitude residual z, and train the dehazing net-



work for haze removal. In this case, the z is directly
fed into the dehazing network without involving the dif-
fusion and denoising processes. It is infeasible to super-
vise model training with the strict pixel-level loss func-
tion under unpaired data setting. Therefore, we follow ex-
isting works [40, 53, 54], using the same adversarial loss
LGAN and patchwise contrast loss LPatchNCE to encour-
age the dehazed results have the same domain distribution
as the clear images, and the hyper-parameters λGAN and
λPatchNCE are all set to 1.

As shown in Fig. 3(b) of the main paper, in stage two,
we joint train diffusion model and dehazing network from
stage one to reconstruct the amplitude residual for enhanc-
ing the dehazing process. In this stage, the z first adds noise
to output zT through the diffusion process, and then recon-
structs the amplitude residual ẑ through multiple denois-
ing processes. We additionally include the diffusion loss
Ldiff based on the LGAN and LPatchNCE , and the hyper-
parameter λdiff is set to 1.

In both training stages, we use Adam [26] optimizer with
β1 = 0.9 and β2 = 0.999, learning rate is 1 × 10−4. The
epoch number is 200. The batch size is 8 and the input
patch size is 256× 256 and augments the data with random
horizontal and vertical flips. The input size of 256× 256 is
randomly cropped from all training images in an unpaired
learning procedure.

A7. Limitation
Although our FrDiff can reconstruct frequency domain fea-
tures well for handling haze, when the resolution of the in-
put image is larger, the resolution of the amplitude residuals
reconstructed by the diffusion model also increases. This
means that the computational effort of the diffusion model
will increase. Therefore, it is expected to make the diffusion
model learn a set with a fixed number of amplitude spectral
priors to reconstruct the frequency domain features so as to
avoid increasing computational costs significantly.

In addition, removing the haze by reconstructing the
spectrum ignores the local spatial differences of the haze,
and the future promises to further enable the model to han-
dle spatially varying haze of different thicknesses.

A8. More Results
In this section, we first provide more quantitative results
and spectral visualisations to validate the effectiveness of
FrDiff. Then, we analyze the sensitivity of the hyper-
parameters in the loss function. Finally, we show more vi-
sualization results.

Results on O-HAZE [2] dataset. To further demonstrate
the generalization ability of our FrDiff, we add comparisons
on O-HAZE [2] in Tab. A1. Experimental results show that

FrDiff achieves higher performance compared to prevailing
unpaired data-based training methods.

Methods D4[60] UCL-Dehaze[53] ODCR[54] FrDiff

PSNR 16.92 15.57 17.46 18.22
SSIM 0.607 0.566 0.632 0.648
FADE 1.358 1.715 0.970 0.744
MUSIQ 63.042 62.432 63.388 63.981

Table A1. Quantitative comparison with SOTA methods on O-
HAZE [2] dataset.

Spectral Visualizations To prove the reliability of FrDiff,
we present the spectral visualizations in Fig. A4. FrDiff
can effectively reconstruct low-frequency illuminance (red
circle) and eliminate the high-frequency spectral bias (red
arrow). In addition, we measure the L2 similarity(↓) of
the frequency features with GT to show the superiority
(ODCR:6.257, FrDiff:2.156).

ODCR FrDiff GTHazy

Figure A4. Visual results on SOTS-Indoor [28] and SOTS-
Outdoor [28] datasets. Zoom in to see better visualization.

Effect of Hyper-parameters. To explore the influence of
hyper-parameters used in Eq. (11). We discuss the differ-
ent λGAN , λPatchNCE , and λdiff as shown in Tab. A2.
It is worth noting that each time we let only one hyper-
parameter change and set the remaining two to 1. Proper
λGAN can provide effective supervision of model training.
The impact of λPatchNCE is insignificant since the haze-
unrelated information is introduced at the same time. The
performance is positively correlated with the λdiff , demon-
strating the ability of the denoising network to reconstruct
magnitude residuals. However, a larger λdiff may lead to
instability in training. After a trade-off between perfor-
mance and training stability, we choose 1 as the value of
λGAN , λPatchNCE , and λdiff .

More Visual Results. To further verify the effectiveness
of our method, we show more comparison results among
the proposed FrDiff and other advanced methods on these
benchmarks. The results on SOTS-Indoor [28] dataset



λGAN PSNR λPatchNCE PSNR λdiff PSNR

0.1 36.39 0.1 36.43 0.1 36.31
1 36.54 1 36.54 1 36.54
10 36.53 10 36.50 10 36.58

Table A2. Results of different λGAN , λPatchNCE , and λdiff on
SOTS-Indoor [28] dataset.

are shown in Figs. A5 and A6. The results on SOTS-
Outdoor [28] dataset are shown in Figs. A7 and A8. The
results on HSTS-Synth [28], Fattle’s [18], and URHI [28]
dataset are shown in Fig. A9, Fig. A10, and Fig. A11, re-
spectively.



Hazy RefineDNet CDD-GAN D4 UCL-Dehaze ODCR Ours GTHazy RefineDNet CDD-GAN D4 UCL-Dehaze ODCR Ours GT

Figure A5. Visual results on SOTS-Indoor [28] dataset. The method is shown at the bottom of each case. Zoom in to see better visualization.
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Figure A6. Visual results on SOTS-Indoor [28] dataset. The method is shown at the bottom of each case. Zoom in to see better visualization.
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Figure A7. Visual results on SOTS-Outdoor [28] dataset. The method is shown at the bottom of each case. Zoom in to see better
visualization.
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Figure A8. Visual results on SOTS-Outdoor [28] dataset. The method is shown at the bottom of each case. Zoom in to see better
visualization.
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Figure A9. Visual results on HSTS-Synth [28] dataset. The method is shown at the bottom of each case. Zoom in to see better visualization.

Hazy RefineDNet CDD-GAN D4 UCL-Dehaze ODCR OursHazy RefineDNet CDD-GAN D4 UCL-Dehaze ODCR Ours

Figure A10. Visual results on Fattle’s [18] dataset. The method is shown at the bottom of each case. Zoom in to see better visualization.

Hazy RefineDNet CDD-GAN D4 UCL-Dehaze ODCR OursHazy RefineDNet CDD-GAN D4 UCL-Dehaze ODCR Ours

Figure A11. Visual results on URHI [28] dataset. The method is shown at the bottom of each case. Zoom in to see better visualization.
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