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A. Implementation Details
A.1. Datasets Details
Dataset Details. As shown in Table A.1, we evaluate our
method across multiple benchmarks, including the intro-
duction of the iNaturalist 2017 [8] dataset to the On-the-
Fly Category Discovery (OCD) task. This demonstrates
the robustness of our approach in addressing challenging
fine-grained datasets. The iNaturalist 2017 dataset, col-
lected from the citizen science platform iNaturalist, com-
prises 675,170 training and validation images spanning
5,089 fine-grained natural categories, including Plantae
(plants), Insecta (insects), Aves (birds), and Mammalia
(mammals), distributed across 13 super-categories. These
super-categories exhibit substantial intra-category variation,

Table A.1. Statistics of datasets used in our experiments.

CUB Scars Pets Arachnida Animalia Mollusca

|YS | 100 98 19 28 39 47
|YQ| 200 196 38 56 77 93

|DS | 1.5K 2.0K 0.9K 1.7K 1.5K 2.4K
|DQ| 4.5K 6.1K 2.7K 4.3K 5.1K 7.0K

posing significant challenges for fine-grained classification.
Following the setup in OCD [2], the categories of each
dataset are split into subsets of known and unknown cate-
gories. Specifically, 50% of the samples from the seen cat-
egories are used to form the support set, DS for training,
while the remainder forms the query set DQ for on-the-fly
testing.

A.2. Evaluation Metric Details
For our evaluation, we focus on three super-categories:
Arachnida, Animalia, and Mollusca. Following the OCD
protocol [2], the categories within each dataset are split into
seen and unseen subsets. Specifically, 50% of the samples
from seen categories form the labeled training set DS , while
the remaining samples are included in the unlabeled set DQ

for on-the-fly testing.

A.3. Algorithm Pipeline for SLE-based Inference
In the testing stage, we first establish a dynamic leader
memory, which is initialized by the category-specific leader
features in Sec. 3.2.

Then, we calculate the maximal intra-category distance,
∆max, as an adaptive threshold to determine if this instance
belongs to unknown categories following an online clus-
tering fashion. Given a test instance, xj ∈ DQ, if it is
predicted to belong to known categories, we assign its es-
timated category label ŷj to the category label according
to the nearest leader. Otherwise, we create a new leader
with the instance feature and append it to the dynamic
leader memory. During the testing process, we update both
known- and unknown-category leaders by momentum aver-
aging of corresponding instance features. The algorithm is
deliberated in Algorithm 1.

A.4. Details of the Compared Methods.
Since the OCD task requires real-time inference and
is relatively new, traditional baselines from NCD and
GCD are inappropriate for this scenario. Thus, we se-
lected the SMILE model [2] as a comparative baseline



Algorithm 1: On-the-Fly Inference based on SLE.
Input: Test data DQ, trained backbone network f(·),

maximal intra-category distance ∆max, and a set
of known-category leader features CS = {li}|YS |

i=1

1 for xi ∈ DQ do
2 Extract instance feature f(xi);
3 for leader feature lj ∈ CS do
4 Compute l2 distance ||lj − f(xi)||22 ;
5 if ||lj − f(xi)||22 ≥ ∆max then
6 Add f(xi) to CS ;
7 Return ŷj = |CS |+ 1 ; // Create a

new category

8 ŷi = argminj ||lj − f(xi)||22 ;
9 C [ŷi] = η · C [ŷn] + (1− η) · f(xi) ;

10 Return ŷi ; // belong to a known
category

and included three hash-like competitive methods, SMILE
baseline (BaseHash) [2], Prototypical Hash Encoding
(PHE) [13], Ranking Statistics (RankStat) [3] and Winner-
take-all (WTA) [5], and one online clustering method Se-
quential Leader Clustering (SLC) [4] for evaluation. The
elaborated introductions are follows:

• Sequential Leader Clustering (SLC) [4]: This tradi-
tional clustering method is tailored for sequential data
analysis.

• Ranking Statistics (RankStat) [3]: RankStat identifies
the top-3 indices in feature embeddings to serve as cate-
gory descriptors.

• Winner-take-all (WTA) [5]: WTA utilizes the indices of
the highest values within groups of features as the basis
for category description. These three robust baselines are
established in accordance with the SMILE.

• Prototypical Hash Encoding (PHE) [13]: PHE lever-
ages Category-aware Prototype Generation (CPG) to cap-
ture intra-category diversity and Discriminative Category
Encoding (DCE) to enhance hash code discrimination,
ensuring effective category discovery in streaming data.

A.5. SMILE Approach and Training Details

We use the pre-trained Stable Diffusion v1.4 to fuse seman-
tic latent embeddings without any fine-tuning. The OCD
models (i.e., based projector H(·), hash projector Hh(·) [2]
and ViT-B-16 [1] backbone) are optimized by SGD [7] op-
timizer during training process. We set the initial learning
rate to be 1e − 2 with a batch size of 128. A weight decay
of 5e− 5 is applied as a regularization term during training.
We use the Cosine Annealing for learning rate scheduling,
which gradually decreases the learning rate to 1e − 5. Our
model is trained for 100 epochs on a single NVIDIA A100-
SXM GPU. Our model is implemented in PyTorch 2.0.0.

Algorithm 2: Iterative Training
Input: Feature Extractor f(·), Projection Head

H(·), Labeled data DS and synthesized data
DG.

Output: f and H(·).
1 for n = 1 in [1, 200] do
2 Extract features and execute clustering

algorithm to assign category labels YA;
3 Generate a set of category-specific leader

features CA;
4 for i = 1 in [1,max iteration] do
5 Sample mini-batches from DS ∪ DG;
6 Calculate overall optimization objective by

Eq. (A.1);
7 Update f and H(·) by SGD [7];
8 end
9 end

Table A.2. Results with Kmeans evaluation.

Method Mollusca CUB

All Old New All Old New

Upbound 39.4 44.6 36.7 59.2 56.7 60.4

Ours 35.2 43.3 30.8 54.1 53.0 54.7
SMILE 29.5 34.1 27.1 49.8 46.2 51.6

As discussed in Section 3.4, the total loss is:

L = Lsup + Lreg + α ∗ Lsle + β ∗ Lc, (A.1)

where Lsup and Lreg are basic losses from SMILE [2]. Fol-
lowing our definition, the Lsup formulated as:

Lsup = − 1

|Pi|
∑
p∈Pi

log
exp (H(f(xi)) · H(f(xp)))∑|B|

j=1 1[j ̸=i] exp (H(f(xi)) · H(f(xj)))
,

(A.2)
where the Pi is the positive set in a mini-batch and |B| is

batch size. Similarly, Lreg is formulated as:

ĥi = hash (Hh (f (xi))) , (A.3)

Lreg = −
∣∣∣ĥi

∣∣∣ . (A.4)

Pseudo-code for Iterative Training. We iteratively per-
form leader feature generation and leader-based representa-
tion learning to dynamically update the leader features. The
pseudo-code for the iterative training is elaborated below.
Gradually Increase α. As the OCD backbone network is
unsupervised and pre-trained by the DINO [1] approach
that acquires a strong representation ability, model fine-
tuning benefits from preserving the representation ability
while adapting to target data. Inspired by the warm-up strat-
egy [12], we design a linear growth paradigm for α. From



Table B.1. Comparison with Diff-Mix on CUB dataset.

Method CUB

All Old New

SMILE [2] 32.2 50.9 22.9
SMILE [2] + Diff-Mix [9] 32.9 54.4 22.1
SMILE [2] + DiffGRE (Ours) 35.4 58.2 23.8

the 0th to the 50th epoch, the α increase from 0.1×α to α.
Then, the α is kept for the remaining 50 epochs.
Sampling Strategy of Leader-based Contrastive Learn-
ing. To facilitate the leader-based contrastive learning in a
mini-bach, we follow [12] to randomly sample NC × N I

images to form a mini-batch, where NC is the number of
categories in a mini-batch and N I is the number of images
for each category. In our experiments, we set NC = 8 and
N I = 16 for 128 batch size.

B. Exploration Experiments
B.1. Gap in Data Synthesis.
Although our DiffGRE can generate virtual images to help
OCD model training, it is difficult to reasonably evaluate
the quality of the generation. We conduct the exploration
experiment in Tab. A.2. We first use the DQ as the gen-
erated data to execute our SLE training, and then directly
use the Kmeans [6] with ground-truth K to generate cat-
egory labels. We report the experimental results as “Up-
bound” in Tab. A.2. Based on the results, we find that our
virtual images contribute almost the same as real data on un-
known categories. Moreover, compared with baseline accu-
racy based on SMILE, the gap between Upbound and ours
is significantly narrowed by our DiffGRE framework, e.g.,
ALL-ACC is from 9.9% to 4.2% on the Mollusca dataset.

B.2. Comparison with Diff-Mix
Quantitative Comparison. In this section, we compare
our method with the Diff-Mix data augmentation approach,
which only augments known categories. We implement ex-
periments on the CUB dataset. We followed the original set-
tings of Diff-Mix and fed it with source images and targeted
classes names to generate augmented images. Results are
shown in Table B.1. “SMILE + Diff-Mix” refers to replac-
ing the Attribute Composition Generation (ACG) module in
the DiffGRE framework with Diff-Mix, in order to make a
fair comparison. Diff-Mix performs well on known cate-
gories, but there is no significant improvement on unknown
categories. This proves that Diff-Mix can only synthesize
images within known categories, leading to its inefficiency
in the OCD task. On the other hand, it is observed that
our method achieves higher accuracy than Diff-Mix, which
indicates the effectiveness of our implementation to synthe-
size novel samples belonging to unknown categories.
Qualitative Comparison. In addition to the quantitative

Diff-Mix

Ours

Image A Image B Synthesised

Figure B.1. Our image generation compared with Diff-Mix [9] on
the CUB dataset.

Table B.2. Analysis on the hyperparameter γ.

Dataset γ
Number of Number of Number of

Remained Images Generated Images Labeled Images

CUB 0.40 1.2K 5.0K 1.5K
Scars 0.65 1.1K 4.9K 2.0K
Pets 0.25 0.3K 1.4K 0.9K

Arachnida 0.40 1.2K 2.8K 1.7K
Animalia 0.20 0.6K 3.8K 1.5K
Mollusca 0.30 1.6K 3.5K 2.4K

Table B.3. Statistics on SLE-based Clusters.
Data |YA| Img/ Cls Img/ Cls (L)

CUB 116 23 15
Scars 171 27 20
Pets 37 19 49
Arachnida 91 19 59
Animalia 76 15 38
Mollusca 103 28 51

comparison, we also conducted a qualitative comparison
between our method and the Diff-Mix. Results are provided
in Figure B.1. The Diff-Mix used an image from category
A as the source image and converted it to the targeted class
B. The output is located in the top-right corner of Figure
B.1. Compared with Diff-Mix, our method takes two im-
ages from different categories as inputs and synthesizes a
novel sample. It can be observed that our synthesized im-
age is more likely to belong to an unknown category.

B.3. Comparison with MixUp and CutMix
Quantitative Comparison. To better understand our
method, we conducted experiments on three datasets CUB,
Stanfors Cars and Ocford Pets to compare our method with
two different mixing methods CutMix and MixUp. Quan-
titative results are summarized in Table B.4. Similarly,
“SMILE + CutMix” and “SMILE + MixUp” involve replac-
ing the Attribute Composition Generation (ACG) module in
the DiffGRE framework with CutMix and MixUp, respec-
tively, to ensure a fair comparison. We can observe that
our method significantly outperforms other methods. Es-
pecially in the unknown categories, our method achieves
higher accuracy than CutMix and MixUp across all the three
datasets. The results further demonstrate the effectiveness



MixUp

CutMix

Ours

Image A Image B Synthesised Image C Image D Synthesised

Figure B.2. Our image generation compared with MixUp and CutMix on the CUB and the Pets dataset.

Table B.4. Comparison with CutMix and MixUp on CUB, Stanfors Cars and Oxford Pets.

Method CUB SCars Pets

All Old New All Old New All Old New

SMILE [2] 32.2 50.9 22.9 26.2 46.7 16.3 41.2 42.1 40.7
SMILE [2] + CutMix [10] 32.8 54.6 21.9 28.2 55.0 15.3 40.9 46.3 38.0
SMILE [2] + MixUp [11] 33.3 55.6 22.1 26.9 51.8 14.9 37.9 41.6 35.9
SMILE [2] + DiffGRE (Ours) 35.4 58.2 23.8 30.5 59.3 16.5 42.4 42.1 42.5

of dual interpolation in the latent space of the Diversity-
Driven Refinement (DDR) module, compared to directly
performing pixel-level interpolation.
Qualitative Comparison. We also visualize the generated
images on different datasets (CUB and Oxford Pets) from
our method, MixUp and CutMix. Examples are illustrated
in Figure B.2. First, we notice that for MixUp and Cut-
Mix, the results look like two images are randomly stitched
together. But our synthesized images are more like real
images. Second, our synthesized images simultaneously
incorporate attributes from both input images. For exam-
ple, in the case on the left, the synthesized cat has blue
eyes, which is the same as the input image A. This visual-
ization intuitively demonstrates the effectiveness of seman-
tic latent interpolation in the Diversity-Driven Refinement
(DDR) module.

B.4. Details of Diversity-Driven Refinement
In Section 4.4, we discussed the impact of γ in the
Diversity-Driven Refinement (DDR) module on the Arach-
nida dataset, and it is observed that the model achieves the
best performance on unknown categories when the number
of the remaining images is comparable to that of labeled
data. In this section, further details about the chosen value
of γ, number of remained images and synthesized images
are shown in Table B.2. Following the similar strategy, we
set different values for γ on six datasets in our experiments

Table B.5. Virtual Category Assignment Strategy

Index Method CUB

All Old New

a) w/o class centers 33.5 55.5 22.5
b) w/o category assignment 31.3 51.9 20.9
c) SMILE [2] + DiffGRE (Ours) 35.4 58.2 23.8

to ensure the number of remained images matches the size
of the labeled training set.

On the other hand, we summarize the clustering results
of SLE in Tab. B.3, where the first column shows the num-
ber of categories to which samples from both known and
virtual categories have been assigned. Moreover, we com-
pared the average number of images per category (the 3rd
Column) from SLE with the labeled training set (the 4th
Column) and find they share the same scale. These results
confirm sufficiency of the generated samples.

B.5. Virtual Category Assignment Strategy

We verify the effectiveness of our design for the virtual cat-
egory assignment in Tab. B.5. Specifically, a) by replacing
class center distances with distances to all training samples,
the results show a decrease in performance compared to our
proposed design. b) When virtual category assignment is
removed, performance further drops. c) These results are
compared to the reference performance of our full method,
which highlights the effectiveness of our approach.



Large and blue eyes.

Golden-brown coat with 
striking patterns.
Dark rosettes on a golden-brown
background.
Large and green eyes.

Our Synthesis (Virtual Category)

Bengal (Unknown Category)

Birman (Known Category)

Blue eyes.

Pointed and upright ears.

Slightly rounded face.

Egyptian_Mau (Known Category)

Distinctive spots that are randomly
distributed across the body.

Large and alert ears.

A mix of browns and blacks.

Black rosettes and stripes.
Pointed and upright ears.
Golden-brown coat.

Black mask-like marking
around the eyes.

Bright yellow throat and chest.
Olive-brown upperparts
Black mask around the eyes.
Short and pointed beak.

Our Synthesis (Virtual Category)

Common_Yellowthroat(Unknown Category)

Kentucky_Warbler (Known Category)

Yellow body.
Olive-green wings and back.
Black eye mask.
Short, pointed beak.

Myrtle_Warbler (Known Category)

Light brown head.

Short, pointed beak.

Yellow hues near the 
sides and tail.

Bright yellow throat.

Olive-brown body.
Slender, pointed beak

Figure B.3. Additional Examples for Attribute Composition Generation (ACG).

Table B.6. Comparison of baseline methods on training time, inference time, model size, and ALL-ACC for the CUB dataset. “*” denotes
results obtained with 4 GPUs in parallel.

Method Inference Finetune Time Synthesis Time Training Time Model Size Inference Time ALL-ACC
Strategy ≈(h) ≈(h) ≈(s) ≈(M) ≈(s) (%)

SMILE [2] Hash-like 0 0 960.6 13.4 11.2 32.2
SMILE [2] + Diff-Mix [9] SLE-based 16 2∗ 8799.9 13.4 17.5 32.9
SMILE [2] + DiffGRE (Ours) SLE-based 0 12 8799.9 13.4 17.5 35.4
SMILE [2] + DiffGRE (w/o DDR) SLE-based 0 12 9160.5 13.4 17.5 30.4

Table B.7. Evaluation on the hyperparameter β.

Value CUB SCars

All Old New All Old New

0.5 34.6 57.6 23.0 28.4 54.7 15.7
0.75 33.9 56.2 22.8 28.1 54.0 15.5
1.0 35.4 58.2 23.8 30.5 59.3 16.5
1.25 34.8 57.8 23.2 26.9 49.9 15.7
1.5 33.2 55.1 22.3 27.4 51.6 15.7

C. Additional Visualization Results
C.1. TSNE comparison between our DiffGRE and

Diff-Mix
We visualize the features generated by our DiffGRE and
Diff-Mix [9] by TSNE in Fig. B.4. Through comparing
these two sub-figures, we find that the images generated
by Diff-Mix [9] are surrounded by the known-category and
unknown-category samples, which indicates that the diver-
sity of the generated images is limited. In contrast, our Dif-
fGRE can generate diverse images that even belong to syn-
thesized purely new categories. Thus, our methods are more

effective in improving OCD performance by generating ad-
ditional and virtual category information.

C.2. Additional successful examples
We discussed visualization results in Section 4.5 in our main
submission. In this section, we provide additional examples
for Attribute Composition Generation (ACG). These exam-
ples are presented in Figure B.3. Positive examples can
support that our method is able to synthesize novel sam-
ples that include additional category knowledge. An ex-
ample is shown on the right of Figure B.3. We find that
the synthesized sample has attributes such as a black mask-
like marking around the eyes, an olive-brown body, and a
short, pointed beak, closely resembling a sample from the
unknown category Common Yellowthroat.

D. Computational Consumption
We also compare computational costs of our framework,
SMILE and Diff-Mix in Table B.6, analyzing Training
Time, Inference Time, ALL-ACC, and other metrics. Ex-
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Known-Category
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Unknown-Category
Sample

Synthesized Purely-New
Category

Synthesized Unknow
Category

Synthesized Known
Category

DiffMixOur DiffGRE
Figure B.4. TSNE visualization of the feature of the images generated by our DiffGRE and Diff-Mix [9]. Through comparing these two
sub-figures, we find that the images generated by Diff-Mix [9] are surrounded by the known-category and unknown-category samples,
which indicates that the diversity of the generated images is limited. In contrast, our DiffGRE can generate diverse images that even belong
to synthesized purely new categories. Thus, our methods are more effective in improving OCD performance by generating additional and
virtual category information.

Table B.8. Comparison with training-free hash-like inference methods, with the best results in bold and the second best underlined.

Method Arachnida Mollusca Oxford Pets Average
All Old New All Old New All Old New All Old New

RankStat [3] 26.6 51.0 10.0 29.3 55.2 15.5 33.2 42.3 28.4 29.7 49.5 18.0
WTA [5] 28.1 55.5 10.9 30.3 55.4 17.0 35.2 46.3 29.3 31.2 52.4 19.1
SMILE [2] + DiffGRE (Ours) 35.4 66.8 15.6 36.5 44.2 32.5 42.4 42.1 42.5 38.2 51.0 30.2

Method CUB Stanford Cars Animalia Average
All Old New All Old New All Old New All Old New

RankStat [3] 21.2 26.9 18.4 14.8 19.9 12.3 31.4 54.9 21.6 22.5 33.9 17.4
WTA [5] 21.9 26.9 19.4 17.1 24.4 13.6 33.4 59.8 22.4 24.1 37.0 18.5
SMILE [2] + DiffGRE (Ours) 35.4 58.2 23.8 30.5 59.3 16.5 37.4 69.3 24.3 34.4 62.3 21.5

periments are conducted on the CUB dataset. Diff-Mix is
applied to generate 5000 images, matching the number of
images generated by our framework. “SMILE + Diff-Mix”
refers to substituting the Attribute Composition Generation
(ACG) module in the DiffGRE framework with Diff-Mix, in
order to provide a balanced comparison. Notably, Diff-Mix
involves two steps for generating new images: first, finetun-
ing its diffusion model, and second, using the pre-trained
model to synthesize samples. Our framework achieves bet-
ter performance with slightly higher inference time than
SMILE. On the other hand, the total generation time for
“SMILE + Diff-Mix” is 16+2 = 18 hours, while our frame-
work completes the process in just 12 hours, as it does not
require finetuning. Additionally, when the DDR module is
removed from our framework, we observe longer training
time and lower accuracy, further highlighting the impor-
tance of the Diversity-Driven Refinement (DDR) module.

E. Additional Hyper-Parameter Analyses

Interpolation Parameters. As shown in Fig. E.1, we ana-
lyzed the impact of λv and λl, for visual embedding inter-
polation and latent embedding interpolation. Theoretically,
if λv or λl are close to 0/1, the generated image resembles
one of the original images, resulting in low diversity. At 0.5,
there is higher diversity but also increased ambiguity. The
results show that the parameters are not sensitive, thus we
empirically set these interpolation parameters to λv = 0.7
and λl = 0.8, respectively.

Loss Weight. We analyzed the impact of hyperparameter β
in Section 4.4. Additional results of the analysis on β are
summarized in Table B.7. Experiments are implemented on
two datasets CUB and Stanford Cars. Our model attains the
highest accuracy when β increases from 0.5 to 1.5 on the
two datasets. Based on the results, we set β = 1.0 for all
datasets during training.
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Figure E.1. Illustration for the impact of the varying interpolation
parameters, λv and λl, for visual embedding and latent embed-
ding, respectively.

F. Additional Evaluation of our DiffGRE com-
pared with training-free hash-like methods

We further conduct experiments to evaluate our method
compared with training-free hash-like approaches. Results
are provided in Tab. B.8. The combination of “SMILE +
DiffGRE” consistently outperforms all competitors, achiev-
ing the highest ACC-ALL averages, which surpasses WTA
by 8.7% and RankStat by 10.2% across the six datasets.

G. Quality Evaluation and Failure Rate
To quantitatively assess the visual quality and semantic di-
versity of the synthesized samples, we conduct evaluations
on the CUB dataset. Specifically, we use the Fréchet Incep-
tion Distance (FID) to evaluate image quality, where our
method achieves a lower score (20.7) compared to Diff-
Mix (23.4), indicating improved visual fidelity (lower is
better). This demonstrates the effectiveness of our ap-
proach in producing high-quality samples suitable for the
OCD setting. Additionally, to measure the semantic di-
versity of synthesized images, we adopt the CLIP Blend-
ing Similarity (CLIP-BS) metric [14], which quantifies the
distance between synthesized blends and their source con-
cepts. Our method achieves a higher CLIP-BS score (9.13
vs. 8.32), suggesting that our re-composition strategy yields
more novel and semantically distinct images. Although the
DDR module effectively filters out low-quality generations,
a small proportion of failure cases still occurs due to the in-
herent randomness of diffusion models, which is a common
limitation in generative synthesis. On the CUB dataset, we
observe that the failure rate remains below 4%, indicating
the overall reliability of our generation process.

H. Zero-shot and Cross-domain OCD
To explore the generalization ability of OCD models in the
absence of labeled data, we conduct additional zero-shot
experiments based on the SMILE baseline. As shown in
Table H.1 (first row), for each dataset, the model is trained
solely on synthesized samples and tested on the correspond-
ing test set. This setting allows us to examine whether syn-

thetic data alone can support effective category discovery
without any real supervision. The performance drops sig-
nificantly, indicating that the lack of labeled data hinders the
model’s ability to learn robust and discriminative features.
These results highlight the limitations of relying purely on
generative data and suggest that zero-shot OCD remains a
challenging and open research problem.

To further investigate model transferability across do-
mains, we train the model on the combined synthetic sam-
ples from the Arachnida (A), Mollusca (B), and Animalia
(C) datasets and test it separately on each domain. This
setting aims to evaluate whether training on mixed-domain
synthetic data can improve generalization in a cross-domain
OCD scenario. As shown in the second row of Table H.1,
performance remains low, likely due to the absence of
domain-specific supervision, which is particularly impor-
tant in fine-grained scenarios. Although building a univer-
sal OCD model is an appealing goal, our results suggest
that simply mixing synthetic data from multiple domains is
insufficient for robust and transferable category discovery.

Table H.1. Zero-shot and cross-domain OCD results under hash-
like inference. We report performance when training on synthetic
data from either the same or combined domains.

Training Source Arachnida (A) Mollusca (B) Animalia (C)
All Old New All Old New All Old New

A→A / B→B / C→C 14.8 14.3 15.1 16.2 12.4 18.3 18.8 10.5 22.3
A+B+C → A / B / C 13.2 12.2 13.9 13.9 11.2 15.3 15.4 9.5 17.8

I. Limitation
Our framework includes the offline generation. While this
reduces the computational cost, the diffusion model lacks
end-to-end optimization, thereby leading to unsatisfactory
generative results. We will explore finetune-based ap-
proaches in the future.
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