HumanSAM: Classifying Human-centric Forgery Videos
in Human Spatial, Appearance, and Motion Anomaly

Supplementary Material

In this supplementary material, we offer further details
on HumanSAM. Appendix A delves into the calculation of
the three anomaly scoring mechanisms. Appendix B de-
tails the specifics of the experimental setup. Appendix C
conducts a deeper analysis of the quantitative experimen-
tal results. Appendix D provides additional quantitative
analyses to support the effectiveness of HumanSAM. Ap-
pendix E presents analyses of spatio-temporal information.
Appendix F is dedicated to exploratory experimental anal-
yses, focusing on the outcomes of training with various
forgery data sources. Appendix G is limitations.

Additionally, we have included videos featuring human-
centric anomalies as part of this supplementary material to
demonstrate examples of each anomaly type.

A. Anomaly Scoring Mechanism

A.1. Spatial anomaly

We used Depth pro[2] to generate depth maps for each
frame of the video. Subsequently, we employed a technique
based on optical flow distortion error[6, 7, 11] to quantita-
tively evaluate these depth maps. This technique measures
the consistency of motion by monitoring the trajectory of
pixel movement. In the depth maps, the pixel values rep-
resent the spatial depth of the scene.By calculating the dis-
tortion error, we are able to assess the coherence between
depth maps, thereby quantifying anomalies in spatial depth.
The warping error is computed as follows:

Optical Flow Estimation: For two consecutive frames
I; and I 1, the optical flow F;_,;y; from frame ¢ to frame
t + 1 is obtained using a optical flow estimation network
[15].

Image Warping: Using the optical flow F;_,; 1, frame
I; is warped to the coordinates of frame ¢ + 1, resulting in
the warped image ft+1:

Iiv1 = W(I, Fioir), (1)

where W (-, -) represents the warping operation based on the
optical flow.

Pixel-wise Difference Calculation: The pixel-wise dif-
ference between the warped image jt+1 and the predicted
image I, is computed using the Lo norm:

Ei = || Ii11 — L |13 )

Final Score: The warping error E,,.rp, is calculated as the
average of the pixel-wise differences over all consecutive

frame pairs:
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where T" denotes the total number of frames.For specific ex-
amples, please refer to Fig. 3.

A.2. Appearance anomaly

We referred to the methods used in VBench[4] for calculat-
ing subject consistency and background consistency. Both
calculations employ the same formula, which involves cal-
culating the sum of the cosine similarities of image features
between consecutive frames, as well as the sum of the co-
sine similarities between the first frame’s image features
and each subsequent frame, and then averaging these to-
tal similarity scores to determine the average consistency
across the frames. For subject consistency, they utilized
DINOI3], while for background consistency, they employed
CLIP[6]. However, we found that this approach becomes
ineffective when dealing with scene transitions.

To address this limitation, we abandoned the similar-
ity calculation between the first frame and the subsequent
frames and instead adopted a sliding window consistency
approach. This method calculates the average similarity
within a specified window, such as over a span of 5 frames.
The specific calculation formula is as follows:
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where f; represents the i* frame, the (-) operation denotes
the calculation of the cosine similarity of image features,
and « and 3 are the weights for the two terms, both of which
are set to 0.5. The calculation formula for Syingow,k 1S as
follows:

L
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where W denotes the window size, it is specified as 5.We
finally calculate the score of a video using CLIP and
DINOV2[10] respectively, and then take the average as the
appearance anomaly score for that video.For specific exam-
ples, please refer to Fig. 4.



Table 1. Video forgery detection performance on the HFV dataset measured by mapped binary classification ACC (%) and AUC (%).

[ACC/AUC in the Table; Key: Best; Avg.: Average].

Vchitect-2.0

CogVideoX- Vchitect-

Method MiniMax  Gen-3 Klin, pika Gen-2 Avg.
(VEnhancer) 5B 2.0-2B
CNNDet[16] 93.7/93.0 93.8/93.2 94.1/92.8 77.6/79.1 93.0/92.4  89.6/89.5 92.3/91.8 93.8/93.1 91.0/90.6(+4.3/+2.3)
DIRE[ 18] 92.9/92.3 94.0/93.3  93.4/92.8 83.1/83.9 93.9/93.2 90.6/90.3 93.4/92.8 93.1/92.5 91.8/91.4(+4.1/+2.4)
F3Net[12] 92.0/90.7 92.0/90.7 88.0/84.0  83.5/85.0 91.0/89.3  89.5/85.7 91.0/88.7 89.5/89.7 89.6/88.0(+5.2/+1.7)
Uni-FD[9] 95.7/99.5 97.1/99.4  93.5/99.0 80.2/90.7 91.9/98.9 91.4/98.5 93.4/99.4 94.9/99.6 92.3/98.0(+11.4/+2.7)
TimeSformer[1] 95.6/99.6 95.6/99.4  96.0/99.7  87.6/95.8 96.0/99.7  95.5/99.4 96.1/99.8 96.0/99.7 94.8/99.1(-0.4/+1.2)
MM-Det[13] 98.1/99.8 99.1/100  98.7/99.9  73.4/94.6  99.0/99.9  98.7/99.9 99.0/99.9 99.0/100  95.6/99.3(-1.4/-0.4)
Ours 99.1/100 97.9/99.2  98.0/100  90.0/99.6  99.3/100  99.3/100 99.7/100 99.4/100 97.8/99.9(0/0)

A.3. Motion anomaly

The calculation method for motion anomaly is to directly
compute the distortion error of the video frame images,
which is the same method as the distortion error calculation
for spatial anomalies.For specific examples, please refer to
Fig. 5.

B. Implementation Details
B.1. Dataset

The dataset is organized according to the nine types of
forged data sources shown in main text. The order from top
to bottom also corresponds to the ranking by the VBench
team[4]. This means that MinMax ranks first in the HFV,
followed by Gen3, then Vchitect-2.0 (VEnhancer), with
Gen-2 being the last.

B.2. Hyperparameters of HumanSAM

We train all parameters of the video understanding branch
while freezing the parameters of the spatial depth branch.
The video understanding branch selected is the distilled
L version of the InternVideo2[17] single modality, with
a patch size of 14 x 14. We choose the image encoder
and patch encoder of Depth pro[2] as the spatial depth
branch. The final output of the video understanding branch
is f, € R?316_ The vector from the spatial depth branch,
after pooling and other operations, becomes f, € R!0%4,
Therefore, f, is passed through a linear layer to reduce
its dimensionality to 1024. f, and f, are then combined
through a trainable parameter « to form the final HFR.

B.3. Training and Inference

For the experimental resources used in training and in-
ference, all experiments were conducted using a single
NVIDIA RTX 3090 GPU with a maximum of 256G of
memory.

During training, for each video, we performed seg-
mented sampling, collecting a total of eight frames, which
were then cropped to 224x224 as input.We used the

AdamW optimizer with a learning rate of 2e-5 and ran for
100 epochs, selecting the best performance on the valida-
tion data from the training set.

For inference, we evaluated all models at the video level.
For frame-level baselines, the final result was the average of
all frame results. For video-level baselines, the results were
obtained following their respective default frame sampling
and evaluation settings.

C. Mapped Binary Classification Experiment

Due to space constraints in the main text, we supple-
ment here the general binary classification experiments for
TimeSformer and HFR. A comparison of Tab. 4 of main
text and Tab. | reveals that methods with lower binary
classification accuracy, such as CNNDet[16], DIRE[18],
F3Net[14] and Uni-FD[9], can significantly improve their
binary classification performance when trained using our
proposed multi-class task. However, for models like
TimeSformer[1], MM-Det[13] and ours, which already
achieve high accuracy in binary classification, training with
the new task has little impact on their binary classification
performance.

Notably, HFR achieves an average ACC of 97.8% and
an average AUC of 99.9%, further demonstrating that our
method more effectively models video features, enabling
it to distinguish between real and synthetic videos with
greater precision.

D. Additional Quantitative Analyses

D.1. Confusion Matrices and Per-Class Perfor-
mance

Fig. | shows the confusion matrices for both fine-grained
(four-class) and binary classification. Our method achieves
Fl-scores of 0.5508 (appearance anomaly), 0.4936 (spa-
tial anomaly), 0.6589 (motion anomaly), and 0.9916 (real).
Most confusions occur between motion and spatial classes,
partially due to the motion-sensitive video branch and the
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Figure 1. Confusion matrices on CogVideoX-5B dataset: (a) Multi-class, (b) Binary.
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Figure 2. Spatial and temporal activation visualization on a CogVideoX-5B video. From the last Transformer layer of the video branch:
(a) original frame at index 24; (b) spatial activation map of that frame; (c) temporal activation bar plot averaged over 8 sampled frames.

limitations of the frozen depth encoder. Nevertheless, the
binary classification performance remains strong and stable.

D.2. Generalization on External Datasets

To evaluate generalizability beyond the HFV dataset, we
test on the Sora dataset, which includes a broader distri-
bution of scenarios. HumanSAM achieves 95.3% accu-
racy and 99.5% AUC, outperforming MM-Det[13] (81.0% /
98.4%). This demonstrates the framework’s strong transfer-
ability even in the presence of diverse, non-human-specific
generative content. Future work will explore methods with
improved generalization across open-world forgery distri-
butions.

E. Spatio-Temporal Information Analyses

Fig. 2 illustrates how our model leverages spatio-temporal
cues to localize anomalies. Specifically, spatial attention
highlights the girl’s distorted right hand in frame 24, while
the highest temporal score is also assigned to this frame.
This demonstrates the model’s potential for precise frame-

level anomaly localization. Additionally, lighting inconsis-
tencies—though not strictly human-centric—are considered
part of the appearance anomaly when they impact human
actions (e.g., uneven illumination on the left side in Fig. 2).

F. Exploratory Experimental Analysis

Due to the length constraints of the main text, some details
of exploratory experiments are presented here. As shown
in Tab. 1 of main text, the higher a synthetic data source
ranks, the better its overall performance on the VBench
benchmark[4]. MinMax[8] ranks first, while Kling[5] ranks
fourth. As shown in Tab. 1, all methods experience a sud-
den performance drop on Kling. To further investigate this,
while keeping the original experimental settings unchanged,
we replaced the CogVideoX-2B forgery data in the training
set with Kling and MinMax for four-class training. This
adjustment was made to compare the results across the re-
maining seven forgery video sources.

As shown in Tab. 2, after replacing the training data with
MinMax and Kling, the overall results still demonstrate that



Table 2. Comparison of multi-class training using different forgery video sources in the HFV dataset measured by ACC (%) and AUC

(%).[ACC/AUC in the Table; Key: Best; Avg.: Average].

Video Vchitect-2.0

CogVideoX- Vchitect-

MiniMax Gen-3 Kling pika Gen-2 Avg.
Source (VEnhancer) 5B 2.0-2B
CogVideoX-2B 70.4/88.2 73.8/88.6 72.3/89.5 65.8/87.5 75.6/92.1 66.5/86.2 69.6/88.0 64.2/83.4 69.8/87.9
MinMax - 63.7/82.2 68.8/87.1 84.5/96.4 65.4/86.5 60.2/83.0 67.6/85.1 55.6/80.6 66.5/85.6
Kling 69.5/87.2 63.7/82.2 68.8/87.1 - 64.2/83.5 60.2/83.0 67.0/85.1 55.6/80.6 64.1/84.1

the seventh-ranked CogVideoX-2B achieves the best per-
formance. Upon closer examination of the CogVideoX-2B
videos, we observed that they still exhibit noticeable gaps
compared to realistic human behavior. This leads us to
hypothesize that lower-ranked synthetic data sources may
contain more of the three types of anomalies, which in
turn benefits the proposed HFR in learning anomalous fea-
tures. Kling and MinMax share identical metrics across
most forgery data sources, indicating that their anomalous
features are quite similar. When HFR trained with MinMax
is used to predict Kling, the accuracy improves by 18.7%,
and the AUC improves by 8.9%, compared to CogVideoX-
2B. However, when HFR trained with Kling is used to pre-
dict MinMax, the performance metrics show a slight decline
relative to CogVideoX-2B.

Based on an analysis of the synthetic video sources from
Kling and MinMax, we speculate that while both exhibit
visual consistency and logical patterns close to real-world
videos, Kling has a grainy texture, making its video quality
noticeably inferior to that of MinMax. This explains the
significant improvement in metrics when MinMax is used to
predict Kling, while using Kling to predict MinMax shows
minimal change. Future work could explore experiments
involving mixed synthetic data sources for detection.

G. Limitations

The rapid evolution of video generation models poses a fun-
damental challenge to the sustainability of existing detec-
tion frameworks. As generative techniques advance contin-
uously, current artifact detection mechanisms may become
outdated quickly, necessitating perpetual updates and adap-
tive strategies to maintain robustness against novel forgery
patterns.
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Framei Frame i+1 Frame i+2

Figure 3. It can be seen that in the first row, two metal knives blur and pass through each other; in the second row, a woman’s hand blurs
as it reaches into the harp; in the third row, a person’s hand passes through a clay pot under production without leaving any traces. Overall,
this violates spatial logic and the normal rules of object interaction.

Frame i Frame i+1 Frame i+2

Figure 4. Some examples of appearance anomalies.It can be seen that in the first row, the hand on the right suddenly changes from an
apparently left hand to a right hand. In the second row, the number of fingers on the right hand changes from six to five. In the third row,
the object held in the hand gradually disappears. Generally speaking, the consistency in appearance cannot be maintained.
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Figure 5. Some examples of motion anomalies.It can be observed that in the first row, the woman’s body maintains a forward-leaning
tendency, but her head suddenly rotates 180 degrees. In the second row, the girl’s right hand takes on the shape of a left hand. In the third
row, the girl’s right hand assumes the posture of a left hand, which would be appropriate if the girl’s body were rotated around. Generally
speaking, the motion of the characters does not conform to normal biological motion patterns.
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