
Learning Deblurring Texture Prior from Unpaired Data with Diffusion Model

Supplementary Material

In this supplementary material, Sec. A1 illustrates the
detailed architecture in our TP-Diff. Sec. A2 describes
the detailed training and inference algorithms. Sec. A3
analyses the model efficiency. Sec. A4 describes in de-
tail the difference between the texture prior in our method
and HiDiff [5]. Sec. A5 provides a detailed explanation
of the self-enhancement strategy mentioned in the exper-
iments. Sec. A6 analyses the upper bound of the perfor-
mance. Sec. A7 describes the dataset used in our method.
Sec. A8 analyzes the limitations. Finally, Sec. A9 shows
more quantitative and qualitative comparison results.

A1. Architecture Details
As described in Sec. 3.1 of the main paper. The deblurring
network and reblurring network together form the entire cy-
cle structure designed for removing and synthesizing blur,
respectively. Within the deblurring network, to fully lever-
age the texture prior and enhance the model capacity, we
incorporate the Texture Transfer Transformer (TTformer)
at multiple scales and feed the texture prior ẑ into them.

Specifically, we illustrate the detailed architecture of the
deblurring network as shown in Fig. A1. We follow the
existing approach [58] to learn features by stacking some
TTformer layers on each scale, where the number of layers
is marked. In each TTformer layer, a filter-modulated multi-
head self-attention (FM-MSA, see Fig. 2(c) of the main
paper) and a transform-modulated feed-forward network
(TM-FFN, see Fig. 2(d) of the main paper) are included.
The parameters of the deblurring network are 11.8M. The
reblurring network is based on the standard U-Net structure
of residual blocks with a parameter size of 29.2 MB, and it
is used only during training.

In addition, we use a neural network consisting of five
stacked ResBlocks, denoted as ϵθ, to estimate the noise.
The purpose of using ResBlocks as the denoising network
is to ensure the same resolution of inputs and outputs while
minimizing the model parameters. The parameters of the
denoising network are 0.1M.

A2. Algorithm
The first and second stage training algorithms for TP-Diff
are shown in Alg. 1 and Alg. 2, respectively. The inference
algorithm for TP-Diff is shown in Alg. 3.

A3. Efficiency
We report the parameters and runtime compared to other
state-of-the-art methods in the main paper, this section an-
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Figure A1. Network structure of deblurring network.

Algorithm 1 TP-Diff Training: Stage One
Input: Texture Prior Encoder (TPE), deblurring network,
reblurring network.
Output: Trained TPE, traiend deblurring network, trained
reblurring network.

1: for s ∈ S, b ∈ B do
2: z = TPE(s, b). (paper Eqs. (1)-(4))
3: sb = DeblurringNetwork(b, z)
4: bs = ReblurringNetwork(s)
5: z = TPE(sb, bs). (paper Eqs. (1)-(4))
6: ŝ = DeblurringNetwork(bs, z)

7: b̂ = ReblurringNetwork(sb)
8: Calculate Ls1 loss (paper Eq. (12)).
9: end for

10: Output the trained TPE, traiend deblurring network,
trained reblurring network.

alyzes in detail the effectiveness of the core components in
our methods. In particular, during inference, the parameters
of our TP-Diff are 11.89M and the computational overhead
is 52.7G MACs. Notably, our computational overhead is
also lower than the latest method SEMGUD (TP-Diff:52.7G
vs. SEMGUD:63.6G). In our TP-Diff, the diffusion model
parameter used for prior reconstruction is 0.12M and the
runtime is 5.2ms when inputting 256×256 on 3090 GPU,
where a total of 9.2G MACs is consumed for the 8 itera-
tions. Although we use a diffusion model, it only costs a
small portion of the overall model overhead, proving the ef-
ficiency of our approach.

A4. Prior Differences Compared to HiDiff [5]

It should be emphasized that our texture prior is quite dif-
ferent from the sharp prior in HiDiff [5], and the reasons are
as follows:
• The capability of the obtained prior is different. Our tex-

ture prior in different spaces is only used to handle blur-



Algorithm 2 TP-Diff Training: Stage Two
Input: Trained TPE, traiend deblurring network, trained reblurring network, denoising network, βt(t ∈ [1, T ]).
Output: Trained denoising network, trained deblurring network.

1: Init: αt = 1− βt, ᾱT =
∏T

i=0 αi.
2: Init: The deblurring network copies the parameters of trained deblurring network.
3: Init: The reblurring network copies the parameters of trained reblurring network.
4: Init: The TPE copies the parameters of trained TPE and freezes them.
5: for s ∈ S, b ∈ B do
6: z = TPE(s, b). (paper Eqs. (1)-(4))
7: Diffusion Process:
8: We sample zT by q (zT | z) = N (zT ;

√
ᾱT z, (1− ᾱT ) I) (paper Eq. (13))

9: Denoising Process:
10: ẑT = zT
11: c = Conv(b)
12: for t = T to 1 do
13: ẑt−1=

1√
αt
(ẑt − 1−αt√

1−ᾱt
ϵθ(ẑt, c, t))+

√
1−αtϵt (paper Eq. (15))

14: end for
15: ẑ = ẑ0
16: sb = DeblurringNetwork(b, ẑ)
17: bs = ReblurringNetwork(s)
18: z = TPE(sb, bs). (paper Eqs. (1)-(4))
19: Diffusion Process:
20: We sample zT by q (zT | z) = N (zT ;

√
ᾱT z, (1− ᾱT ) I) (paper Eq. (13))

21: Denoising Process:
22: ẑT = zT
23: c = Conv(bs)
24: for t = T to 1 do
25: ẑt−1=

1√
αt
(ẑt − 1−αt√

1−ᾱt
ϵθ(ẑt, c, t))+

√
1−αtϵt (paper Eq. (15))

26: end for
27: ẑ = ẑ0
28: ŝ = DeblurringNetwork(bs, ẑ)

29: b̂ = ReblurringNetwork(sb)
30: Calculate Ls2 loss (paper Eq. (16)).
31: end for
32: Output the trained denoising network and trained deblurring network.

ring in the corresponding region. The spatial diversity in
our texture prior is reflected in that the prior with different
regions is only used to handle the corresponding region.
In contrast, HiDiff uses a set of out-of-order priors with
a specific quantity, it cannot explicitly represent the blur-
ring in different regions. We compare their performance
in Tab. 4 of the main paper, demonstrating the advantages
of the generated prior in our TP-Diff.

• The application scenarios are different. The supervi-
sion used to generate prior in HiDiff comes from paired
data and is not feasible for unpaired inputs. Benefiting
from our TPE, TP-Diff can learn texture priors from un-
paired data and is robust enough for different sharp in-
puts. Please note that it is the first attempt to introduce
the diffusion model to unpaired restoration and could in-

spire other unpaired tasks.
• The structure of the denoising network used to generate

the prior is different. Our TP-Diff uses CNNs to compose
the denoising network, while the HiDiff uses the MLPs.
In contrast, our denoising network has fewer parameters
(TP-Diff: 0.12M vs. HiDiff: 0.44M) and comparable run-
times (TP-Diff: 5.2ms vs. HiDiff: 3.4ms) when inputting
256×256 on 3090 GPU.

A5. About Self-Enhancement Strategy in
SEMGUD [3]

In Tab. 1 of the main paper, the latest SEMGUD [3] pro-
poses a self-enhancement strategy that obtains favorable
performance, this approach lacks fairness by introducing
pre-trained fully supervised models to guide model training.



Algorithm 3 TP-Diff Inference
Input: Trained denoising network, trained dehazing net-
work, βt(t ∈ [1, T ]), blurry images b ∈ B.
Output: Deblurred images Sb.

1: Init: αt = 1− βt, ᾱT =
∏T

i=0 αi.
2: Denoising Process:
3: Sample zT ∼ N (0, 1)
4: ẑT = zT
5: c = Conv(b)
6: for t = T to 1 do
7: ẑt−1=

1√
αt
(ẑt − 1−αt√

1−ᾱt
ϵθ(ẑt, c, t))+

√
1−αtϵt (pa-

per Eq. (15))
8: end for
9: ẑ = ẑ0

10: sb = DeblurringNetwork(b, ẑ)
11: Output deblurred images sb.

As stated in Sec. D of SEMGUD’s supplementary, for train-
ing stability, it introduces the pre-trained NAFNet (33.69 dB
PSNR on GoPro) as the extra deblurring model before esti-
mating the prior from blurry inputs, thus bringing more per-
formance gains. In contrast, TP-Diff is more fair by train-
ing directly from scratch using unpaired data. Therefore,
we train another version of our model which is optimized
with a similar strategy named TP-Diff-se for fair compar-
isons. The experimental results show that we also obtain
better performance when using the same strategy (TP-Diff-
se:30.16dB vs. SEMGUD:29.06dB).

A6. About Upper Bound
It is worth emphasizing that in the first stage (i.e., not
involving the diffusion model), our model uses unpaired
blurry-sharp images as input. In this case, the model per-
formance is limited by the selection of unpaired sharp im-
ages, and the performance reaches an upper bound if fully
paired blurry-sharp images are used directly as input. The-
oretically, this also represents the upper bound of the sec-
ond stage can be reached. If paired data inputs are used di-
rectly, the model performance reaches an upper bound (Go-
Pro: 33.46dB/0.965, HIDE: 31.52dB/0.945). Moreover, it
can also be noted from the results of HiDiff in Tab. 1 of
the main paper, our method also generates a more benefi-
cial texture prior when using fully paired inputs and yields
better results.

A7. More Dataset Details
We evaluate the our method on widely-used datasets: Go-
Pro [31], HIDE [42], RealBlur [38], RB2V Street [34],
and RSBlur [39]. GoPro [31] dataset includes 2,103
pairs for training and 1,111 pairs for testing. HIDE [42]
dataset only includes 2,025 images pairs for testing. Real-

Blur [38] dataset contains two subsets: RealBlur-R and
RealBlur-J. Each subset contains 980 pairs for testing.
RB2V Street [34] dataset includes 9,000 pairs for training
and 2,053 pairs for testing. RSBlur [39] dataset includes
8,878 pairs for training and 3,360 pairs for testing.

During training, our method requires unpaired blurry im-
age sets B and sharp image sets S. For fair comparisons, we
follow existing works [3, 15, 35] to construct training data.
Specifically, we split the training set of GoPro (contain-
ing 2,103 image pairs), RSBlur (containing 13,358 image
pairs), and RB2V Street (containing 11,000 image pairs)
dataset into two disjoint subsets that capture different scenes
with a specific ratio of 0.6:0.4. In the first subset, we se-
lect blurry images to form the blurry image set B, while in
the second subset, we choose sharp images to construct the
sharp set S. The statistics of training image sets and test
image sets are reported in Tab. A1.

Based on this, we conduct three sets of experiments: i)
Using the GoPro training set for training and the test sets
for GoPro, HIDE, RealBlur-R, and RealBlur-J for testing.
ii) Using the RB2V Street training set for training and its
test set for testing. iii) Using the RSBlur training set for
training and its test set for testing.

A8. Limitation
Although our texture prior can handle spatially varying blur,
the resolution of the texture prior that needs to be gener-
ated increases as the input resolution increases. This means
that the computational effort of the diffusion model will
increase. Therefore, it is expected to make the diffusion
model learn a set with a fixed number of texture priors to
learn sharp features so as to avoid increasing computational
costs significantly.

In addition, a more powerful reblurring is one of the im-
portant factors in improving performance. However, the
core of TP-Diff enables a powerful DM to assist the deblur-
ring process by predicting the unknown texture prior. To
realize this, we propose TPE to supervise DM training and
learn to generate spatially varying texture priors. Future we
will further explore the DM for reblurring performance.

A9. More Results
In this section, we first provide experiments to verify the
effectiveness of the diffusion model. We then analyze the
sensitivity of the hyper-parameters in the loss function. Fi-
nally, we show more visualization results.

Effect of Hyper-parameter λWave. To explore the im-
pact of the wavelet-based adversarial loss we presented
in Eq. (11), we discuss the different λWave as shown
in Fig. A2. The experiment results show that too small
λWave cannot effectively preserve the texture structure,



Datasets Number of data samples

Train-B Train-S Test Pairs

GoPro [31] 1,262 841 1,111
HIDE [42] - - 2,025
RealBlur-R [38] - - 980
RealBlur-J [38] - - 980

RB2V Street [34] 5,400 3,600 2,053

RSBlur [39] 8,115 5,410 3,361

Table A1. Statistics of datasets used in our method.

while too large λWave affects the illumination of the image
and reduces the performance. Therefore, we empirically set
λWave to 0.2 in our model.
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Figure A2. Sensitivity analysis of λWave.

Effect of Hyper-parameter K. To show the reliability of
adaptive filtering within FM-MSA in Fig. 2(c) of the main
paper, we analyze the effect of kernel size K on describing
complex blurs for adaptive filtering in Fig. A3. The per-
formance positively correlates with K. It demonstrates the
powerful potential of our adaptive filtering to handle com-
plex blurs. Although a larger K will allow more pixels to be
referenced, it will also increase the computational overhead.
We finally set K to 5.

Experiments of Cross-Validation. In Tab. A2, we fol-
low [18, 19] using RealBlur-J and RSBlur for cross-
validation to verify the generalization ability. Results show
that our TP-Diff is able to achieve better generalization abil-
ity compared to other unpaired training methods. It is worth
noting that it is unfair to compare the cross-validation re-
sults of our method with other generalized deblurring meth-
ods, since the unpaired inputs are already inherently more
challenging than the paired inputs. In addition, the core of
TP-Diff is to assist the deblurring process by introducing a
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Figure A3. Effect of the number of kernel size K.

Methods UVCGANv2 [46] UCL [49] TP-Diff
PSNR 24.85 24.56 25.45
SSIM 0.682 0.701 0.735

Table A2. Results of cross-validated experiments.

diffusion model that predicts beneficial texture prior, rather
than learning the blurry degradation template.

More Visual Results To further verify the effective-
ness of our method, we show more comparison re-
sults among the proposed TP-Diff and other advanced
methods on six different benchmarks. The results on
GoPro [31], HIDE [42], RealBlur-J [38], RealBlur-
R [38], RSBlur [39], and RB2V Street [34] are shown
in Fig. A4, Fig. A5, Fig. A6, Fig. A7, Fig. A8, and Fig. A9,
respectively.
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Figure A4. Visual results on GoPro [31] dataset. The method is shown at the bottom of each case. Zoom in to see better visualization.
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Figure A5. Visual results on HIDE [42] dataset. The method is shown at the bottom of each case. Zoom in to see better visualization.
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Figure A6. Visual results on RealBlur-J [38] dataset. The method is shown at the bottom of each case. Zoom in to see better visualization.
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Figure A7. Visual results on RealBlur-R [38] dataset. The method is shown at the bottom of each case. Zoom in to see better visualization.
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Figure A8. Visual results on RSBlur [39] dataset. The method is shown at the bottom of each case. Zoom in to see better visualization.
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Figure A9. Visual results on RB2V Street [34] dataset. The method is shown at the bottom of each case. Zoom in to see better visualization.
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