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6. Implementation Details
Fine-tuning multi-view diffusion. We utilize the Won-
der3D [23] as the multi-view diffusion model. As the Won-
der3D model is designed for objects and trained on Obja-
verse [7], it has limited knowledge about humans and di-
rectly applying it into our architecture would lead to dissat-
isfactory results. To mitigate this problem, we fine-tuned
Wonder3D with the MvHumanNet dataset. To ensure train-
ing efficiency, we only selected 600 humans and used 30
poses for each scan, summing to 18K training data. We in-
put the front view and supervise the output with correspond-
ing front, back, left and right views. The resolution is set to
256, and we use a learning rate of 5e-5 at the mixed training
stage and 2.5e-5 at joint training stage. The training con-
verges on 8 × Nvidia A800 GPUs in 9 days, with a batch
size of 4 per GPU. Though improved, the overall result is
still non-optimal, leading to the gap between the monocular
setting and the multiview setting in our experiments.
Fine-tuning Gaussian reconstruction model. To obtain
an initial set of Gaussians mentioned in Section 3.2:

Gt = {gtm}Mm=1, gtm = {µt
m, f

t
m}, (19)

we leverage a fine-tuned LGM model. We use the
same dataset mentioned in Section 4.1, and fine-tuned the
“large”” LGM with an input resolution of 256 and an output
Gaussian resolution of 128 per view. We follow the original
LGM configuration for the learning rate and batch size. The
training converges on 8 × Nvidia A800 GPUs in 5 days.
Training details. We train our HGG modules with the fine-
tuned LGM model frozen. We uniformly sample 8 frames
from each video and use the 8 frames as input for our mod-
ule. The learning rate is set to 4e-4, gradient clip is 1.0,
batch size to 1 per GPU and gradient accumulation steps to
8. We trained our model on 8 × Nvidia A800 GPUs, and it
converges in 18 hours.
Evaluation split. Our evaluation split is separated from the
training split. We randomly selected 10 scans in the MvHu-
manNet as the evaluation split. Their IDs are listed as fol-
lows: 200102, 200114, 200125, 200134, 200137, 200151,
200535, 202148, 202209, 204157.

7. More Analysis
7.1. Efficiency
Though processing large amount of information across the
frames, HGG is highly-efficient thanks to the design of
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Figure 5. Fail cases. (a) Wonder3D fails to generate reasonable
back and side views, resulting in the failure for LGM Gaussian re-
construction. (b) Wonder3D generates multi-views of good qual-
ity, but LGM reconstruction fails due to inconsistent camera con-
straints provided by Wonder3D.

learnable queries, negligible compared with the LGM U-
net. In this paragraph, the efficiency of each module will be
theoretically analyzed.

The intra-node transformer enables efficient communi-
cation with the Gaussians. If attention is directly applied
to the union of all Gaussian sets, the complexity would be
O(M2T 2D2), M is the number of feed-forward Gaussians
per frame, T is the number of the frames, and D denotes
the dimension of the features. Given that N is often at the
10,000 level and a video typically have hundreds of frames,
it would become an unacceptable computation bottleneck
both for time and memory. With our HGG, Gaussians are
collected by the mesh vertices, and the complexity becomes
linear when each mesh node applies cross attention with the
affiliated Gaussians with learnable queries:

O((MT/N) ∗N ∗D2) = O(MTD2) (20)

This would be over 106 times more efficient than vanilla
cross attention between Gaussians.

On the other hand, the computation complexity of the
inter-node attention is rather small, thanks to the connectiv-
ity given by mesh. Empirically, a node has approximately
10 neigbours, so the complexity is only O(10ND2), which
is negligible compared with other modules.



Figure 6. More qualitative results on novel pose animation. The human avatar in various poses indicates the high-quality of our recon-
structed 3D avatar.

Table 3. Quantitative results of 50 testing examples.

Deepfashion MvHumanNet
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

LGM 18.01 0.846 0.196 19.54 0.887 0.129
Ours (LGM) 20.31 0.901 0.172 21.82 0.892 0.112
IDOL 20.24 0.904 0.174 21.03 0.894 0.116
Ours (IDOL) 22.38 0.912 0.154 23.59 0.930 0.092

7.2. Monocular Setting

As introduced in the limitations, we observe a gap of 3.4
dB in PSNR between monocular settings and multi-view
settings. Though we achieved SOTA in monocular setting,
the quality is still far from downstream applications. As il-
lustrated in Figure 5, we found that the fail cases largely
derives from (1) the total failure of Wonder3D to gener-
ate novel views. (2) generated images do not follow cam-
era constraint strictly, causing misalignments across views.
These two reasons account for the failure in Gaussian ini-
tialization with LGM, and thus lead to corrupted results.

We attribute this issue to a lack of open-sourced real-
world human diffusion models. Such work will largely fuel
the field of single-view human reconstruction.

7.3. Comparison with new methods
IDOL can replace LGM to serve as the single-frame re-
construction module in our pipeline. Therefore, we further
evaluate our method with this module. As shown in Table 3,
our method surpasses the SOTA method and achieves better
results with the stronger backbone IDOL. Yet, AniGS has
not open-sourced their codes or test splits.

We conduct experiments on Deepfashion, an in-the-wild
fashion clothing dataset. As shown in Table 3 and Figure 7,
our model achieves consistent performance improvements
with different reconstruction modules.

8. More Visualization Results
We present more visualization results for both novel view
synthesis and novel pose animation in Figure 6 and 8.

9. Broader Impacts
Our model’s capacity to generate high-quality 3D animat-
able avatars raises substantial privacy risks. To address
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Figure 7. Visualization on Deepfashion and MVHumanNet.

these, the creation of ethical guidelines and legal frame-
works is imperative. This necessitates close collaboration
among researchers, developers, and policymakers. Re-
searchers should embed ethical considerations in devel-
opment, while developers must implement privacy-centric
practices. Policymakers need to craft regulations that de-
fine proper use, penalize misuse, and safeguard user privacy.
Such collaboration is crucial for promoting the responsible
application of this technology.
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Figure 8. More qualitative results on novel view synthesis. The novel views in multiple directions indicate the high-quality and potential
downstream applications of our reconstructed 3D avatar.
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