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A. Diversity Measurement

For a given token sequence A € RM*P with the num-

ber of tokens as /N and the dimension as D, we analyze
the token representations on the unit sphere by normaliz-
ing the length of each token to one following the common
practice [3, 22]. As the convex envelope of matrix rank,
the nuclear norm is widely used to measure the diversity
of matrix rows [2]. Based on the theorem in [4], || A]|. is
the convex envelope to rank(A) when ||A||r < 1. Since
|A|lr = VN (each row vector in A is unit vector), the
convex envelope of rank(A) turn to ||A||./v/N. Due to
the properties of the nuclear norm, ||A||./v/N is bounded
by vk where k = min(N, D). In practical implementation,
the length of the token sequence [V is typically around 1024,
and the embedding dimension D is commonly 4096. Thus,
min(N, D) = N and ||A||./v/N < +/N. Since the length
of token sequences varies during the forward process, the
upper bound of ||A]|./vN depends on N. To get rid of
the influence from N, we apply || A||../N, which has a clear
upper bound to measure the diversity in token sequences.

B. Experimental Settings

B.1 Implementation Details

We train the model for one epoch, and all experiments are
conducted on 8 Ascend 910B GPUs with 65 GB of mem-
ory. We randomly sample 0.1% from the training set of
the 665k instruction data of LLaVA-1.5 [11] to estimate the
feature map rank of different vision encoders. The training
hyper-parameters, e.g., batch size, learning rate and weight
decay, all follow EAGLE [19]. For multi-vision encoding,
we divide the whole encoder equally into three stages, e.g,
conducting token pruning after the 7th, 15th and 23rd block
for an encoder with 24 blocks in total. For pruning in LLM
decoding, we conduct token reduction at the 4th, 12th and
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20th layer, and filter with top-5 attention heads for more
accurately measuring the redundancy of visual tokens.

B.2 Evaluation Datasets

GQA [6] consists of three components: scene graphs, ques-
tions, and images. The image component includes raw
images, spatial image features, and features of all objects
within the images. GQA questions are designed to assess
a model’s understanding of visual scenes and its ability to
reason about various image attributes.

MMBench [13] provides a multi-dimensional, hierarchical
evaluation of a model’s overall performance. It structures
ability assessments across three levels: the first level (L-1)
evaluates two primary abilities, perception and reasoning;
the second level (L-2) expands on L-1 with six sub-abilities;
and the third level (L-3) further refines L-2 into 20 specific
ability dimensions. This tiered structure allows for a thor-
ough evaluation of the diverse capabilities.

MME [5] is a comprehensive benchmark designed to metic-
ulously evaluate a model’s performance across various as-
pects. It comprises 14 sub-tasks that specifically assess both
perceptual and cognitive abilities. The use of manually con-
structed instruction-answer pairs and concise instruction de-
sign effectively mitigates data leakage and ensures fair per-
formance evaluation.

POPE [9] evaluates object hallucination in models by refor-
mulating hallucination assessment. Models are tasked with
answering binary questions regarding the presence of ob-
jects in images. Accuracy, recall, precision, and Fl-score
are utilized to measure hallucination levels across three dis-
tinct sampling strategies.

ScienceQA [14] encompasses a diverse range of scientific
domains, including natural, language, and social sciences.
Questions are hierarchically organized by topic, category,
and skill, resulting in 26 topics, 127 categories, and 379
skills. This structure provides a comprehensive and diverse
question set for evaluating a model’s multimodal under-
standing, multi-step reasoning, and interpretability.



Strategy GQA OKVQA SEED SQA AI2ZD POPE TextVQA DocVQA ChartQA  OCR | Avg
Rank-based  64.4 58.8 70.8 69.8 67.8 86.7 71.3 72.2 66.9 513 | 67.99
Average 64.2 58.3 70.0 69.0 67.9 87.3 69.7 67.6 65.1 496 | 66.87
Rank-reverse ~ 62.9 57.9 68.8 69.1 67.4 85.9 68.1 65.5 64.1 472 | 65.69
Table 1. Ablation study on the assigning strategies of the retained visual token number budget for different vision experts.
Strategy #Token GQA OKVQA SEED SQA AI2ZD POPE TextVQA DocVQA ChartQA OCR
Post-projection fusion 1193  64.4 58.8 70.8 69.8 678  86.7 71.3 72.2 66.9 513
Pre-projection fusion 1193  64.3 57.9 700 694 660 86.7 71.6 70.9 66.2 493
Fusion strategy 1; Pruning strategy |
Upper bound 1193  64.4 58.8 70.8 69.8 678  86.7 71.3 72.2 66.9 513
Our collaborative prune 576 64.3 58.7 70.7  69.7 67.7 86.9 71.5 72.2 66.3 521
Random prune 576 63.3 57.9 684 682 640 849 60.9 43.0 47.0 432
Separate prune 576 63.6 58.6 692 69.0 668 873 68.3 66.2 65.0 502
Resampler 576 61.7 543 645 66.6 623 855 63.1 48.1 50.9 348
MLP 576 63.2 58.1 68.0 672 660 863 67.8 54.7 60.1 410
PixShuffle 576 63.6 58.2 679 682 659 859 67.2 534 59.4 400

Table 2. Ablation study on the pruning strategies for the multi-vision experts fusion stage.

TextVQA [20] evaluates a model’s ability to integrate
diverse textual information within images. It assesses
text understanding and reasoning through visual question-
answering tasks that incorporate rich textual data. To an-
swer accurately, models must comprehend both the visual
content and the embedded text.

SEED-Bench [8] comprises 19k multiple-choice questions
with precise human annotations, approximately six times
larger than existing benchmarks. It evaluates 12 dimensions
comprehension of image modalities.

ChartQA [16] covers 9.6K human-written questions as
well as 23.1K questions generated from human-written
chart summaries, which involve visual and logical reason-
ing over charts.

DocVQA [17] promotes the extraction and utilization of
document content to address high-level tasks defined by hu-
man users. Challenges and release datasets are organized to
enable machines to comprehend document images and an-
swer associated questions.

AI2D [7] comprises over 5k science diagrams from grade
school curricula, accompanied by more than 150k detailed
annotations, their syntactic parses, and over 15k associated
multiple-choice questions.

OKVQA [15] includes outside knowledge visual question
answering datasets with more than 14k questions that re-
quire external knowledge to answer.

OCRBench [12] is a comprehensive evaluation bench-
mark for OCR, which contains various text-related vi-
sual tasks including Text Recognition, Scene Text-Centric
Visual Question Answering (VQA), Document-Oriented
VQA, Key Information Extraction (KIE), and Handwritten
Mathematical Expression Recognition (HMER) collected
from 29 datasets.

C. Additional Experimental Results

Token Pruning in Multi-vision Encoding Ablation study
for the assigning strategy of retained visual token number
ratio for different vision experts is shown in Table 1. To
determine the token number allocation for multi-vision ex-
perts, we compare our rank-based strategy with 1) Aver-
age: assigning equal token numbers to all experts and 2)
Rank-inverse: assigning fewer tokens to experts generating
higher-ranked features. Table 1 shows that our rank-based
strategy achieves the best performance, especially on more
challenging OCR tasks, demonstrating that low-rank feature
maps contain less information and should be allocated with
fewer token budget.

Token Pruning in Multi-vision Fusion Previous multi-
vision experts based MLLMs usually adopt pre-projection
fusion, while we propose a more flexible post-projector fu-
sion strategy that each expert independently adapts visual
tokens before fusion, which achieves superior performance
as shown in Table 2. Moreover, based on the projector for
aligning multi-vision experts, we compare our collabora-
tive pruning strategy with 1) Separate pruning: pruning to-
kens within each expert separately and 2) Random pruning.
Table 2 shows that our strategy significantly outperforms
two alternatives, showing the effectiveness of reducing the
token redundancy across multi-vision experts. Compared
with parameter-based compression methods, our parameter-
free pruning strategy performs better with the priority of
measuring the redundancy with similarity across experts.
Instance-adaptive Text-guided Token Pruning Firstly, we
compare the performance of employing all attention heads
with selecting top-k significant attention heads for evalu-
ating the visual token redundancy. Table 3 shows that our
attn-head filtering strategy significantly improves the per-



Pruning Attn-head| Avg. Pruning Avg. Retained
Strategy Filtering | Tokens | Layer Indexes Tokens OKVQA SQA AI2D GQA SEED POPE TextVQA DocVQA ChartQA OCR
Upper Bound | - | 576 | - | - | 587 69.7 677 643 707 869 715 722 663 521
X 297 (1] [288] 588 69.8 664 634 700 86.1  70.0 59.9 634 432
Pre-defined Ratio v 297 (1] [288] 587 697 668 635 702 862 702 61.4 63.2 447
v 242 | [4,12,20] (390, 172, 78] 590 69.5 665 632 706 862 705 65.9 64.8 485
312" [525",252%, 122" 59.0 70.0 668 640 71.0 864 713 70.1 656 552
Task-adaptive Ratio| v/ 2427 | [4,12,20] |[396",170°,76"]1| 59.0 69.9 66.7 63.6 70.7 862  70.7 69.0 65.1 550
126" [2267,80",36"] | 584 69.7 664 635 69.8 869  70.1 66.7 64.6 523

Table 3. Comparison with pre-defined pruning strategy under the same training setting using common benchmarks. Pruning Layer Indexes
specify the LLM layer indexes at which vision tokens are pruned, starting from 0 and occurring prior to input.
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Figure 1. Contribution of vision encoders for POPE and DocVQA.

formance on OCR by 0.8% accuracy, exhibiting the effec-
tiveness of employing the most relevant attention for ac-
curately measuring the token redundancy. To evaluate the
adaptability of our instance-adaptive token pruning strategy,
we conduct experiments with a pre-defined pruning ratio to
prune visual tokens at a fixed ratio. As shown in Table 3, our
strategy consistently outperforms fixed pruning rates across
all benchmarks with the same average tokens of 242, par-
ticularly outperforming by 2.6% on OCR tasks, which are
more complex and require more tokens than general tasks.
These results illustrate that tailoring adaptive pruning strate-
gies to specific instances can dynamically adjust the token
budget and help mitigate performance degradation.
Contribution of Vision Encoders. To understand the im-
pact of vision encoders, we evaluate the ratio of retained
token numbers for different vision encoders. As shown in
Fig. 1, EVA and Convnext contribute more to fine-grained
POPE, while Pix2Struct and Convnext are more crucial for
DocVQA, showing the effectiveness of our method for re-
taining suitable visual tokens for different tasks.

Extensive Evaluation on Video Benchmarks. Moreover,
we make zero-shot evaluation on video benchmarks follow-
ing IG-VLM by directly using our image MLLMs. Table 4
shows that METEOR achieves superior or comparable re-
sults with fewer tokens. These results support the generality
of METEOR for token compression in various benchmarks.
Extension on Different Set of Vision Encoders. Table 5
shows that METEOR consistently outperforms Cambrian-1
on Knowledge and General tasks that rely more on LLM
reasoning, and OCR and Chart for fine-grained visual rea-

Next-QA MSVD ActivityNet
Method # Tok. Acc. Acc. Score | Acc. Score
Video-LLaVA 2048 - 70.7 - 453 -
IG-VLM 2880 63.1 788 4.1 |543 34
EAGLE 1024 63.7 792 41 |550 34
DeepStack-L 576 61.0 76.0 4.0 |493 3.1
METEOR 242% 63.3 79.0 4.1 |555 34
Table 4. Zero-shot evaluation on Video QA benchmarks.
Method #Tok. | Knowledge  General ~OCR and Chart
MGM-HD [10] 2880 62.0 72.7 62.9
Cambrian-1 [21] 576 65.4 73.1 71.3
METEOR 576%* 65.7+0.1 73.8103 75.6403
METEOR 324% 65.5+0.1 73.5+02 746103

Table 5. Results using the same training data, vision encoders and
LLM as Cambrian-1, averaged over three tests with std reported.

soning using the same 576 tokens. Remarkably, the per-
formance gains of METEOR become significant on OCR
and Chart (4.3% using 576 tokens and 3.3% using 324 to-
kens), since the task demands handling detailed local visual
information. These results strongly support the efficacy of
METEOR’s advanced token pruning.

Extensive Evaluation on Single-encoder MLLM. We val-
idate the effectiveness of our pruning strategies at each stage
for single-encoder MLLMs. Table 6 shows that our pro-
gressive pruning in Stage I outperforms pruning all at once
in PruMerge++ on 5 of 6 benchmarks following the setting
of PruMerge. Table 7 shows that our adaptive pruning in
Stage 3 outperforms FastV and Pdrop on tasks with varying
complexity, especially the challenging OCR tasks (61.8%
vs. 55.9% and 59.1% for ChartQA and 67.5% vs. 62.1%
and 65.6% for DocVQA). Furthermore, the combination of
Stages 1&3 yields a highly efficient LLaVA variant of 12%
FLOPS and is superior to AIM [24] (to be cited in the fi-
nal version) on most benchmarks, especially on TextVQA
(53.8% vs. 48.4%). This forms the solid basis for ME-
TEOR to achieve efficient multi-encoder MLLM by using
the feature rank for sparsity allocation and pruning mutu-
ally redundant tokens in multi-vision fusion.

Ablation on Hyperparameters. Table 8 shows that select-
ing top-5 (k=5) attention heads to identify the redundant vi-
sual tokens performs best, and A controls the different over-



Method Flops(%) GQA SQA MME POPETextVQAVQAv2
LLaVA-1.5-7b 100% 62.0 66.8 1510.7 859 582  78.5
+PruMerge++ [18] 29% 57.5 68.3 1462.4 840 57.1 76.8
+Our Stage 1 29% 58.6 69.11472.8 845 573 764
+AIM [24] 12% 54.6 67.11277.779.5 484  69.0
+Our Stage 1&3 12% 55.1 67.91321.2 784 53.8 69.5

Table 6. Comparison of each component based on LLaVA-1.5.

Method Flops(%)GQASQAPOPETextVQAChartQADocVQA
LLaVA-Next-7b 100% 64.270.4 86.1 67.2 64.0 70.0
+FastV [1] 51% 63.569.3 86.3 66.5 55.9 62.1
+Pdrop [23] 46% 639694 86.4 67.0 59.1 65.6
+Our Stage 3 44% 64.069.6 86.1 67.1 61.8 67.5

Table 7. Comparison of pruning methods within LLM layers.

k # Tok.|Know. Gene. OCR|| X # Tok.|Know. Gene. OCR
3 242% | 65.0 73.6 64.8|65 312*% | 652 73.8 65.6
5 242*% | 652 735 65.0(/50 242* | 65.2 73.5 65.0
7 242% | 649 735 64.6(25 126% | 64.8 734 63.4

Table 8. Ablation study on hyperparameters k and .

all token budgets for the model.

D. Limitation

While we have validated that METEOR performs well
across a wide range of benchmarks, we find that it lags
behind the best models available, such as Qwen2-VL.
One reason is that our training data is not diverse and
huge enough. Besides, a fixed input resolution may suf-
fer poor performance for the given image with an ex-

treme imbalanced ratio.

In the future, we will validate

our method based on more advanced architecture equipped
with anyres techniques to accommodate images of various
high resolutions with more diverse data for improved per-
formance.

References

(1]

(2]

(3]

(4]

Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang
Lin, Chang Zhou, and Baobao Chang. An image is worth
1/2 tokens after layer 2: Plug-and-play inference acceler-
ation for large vision-language models. In Proceedings of
the 18th European Conference on Computer Vision (ECCV),
pages 19-35, 2024. 4

Shuhao Cui, Shuhui Wang, Junbao Zhuo, Liang Li, Qing-
ming Huang, and Qi Tian. Towards discriminability and di-
versity: Batch nuclear-norm maximization under label insuf-
ficient situations. In 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 3941—
3950, 2020. 1

Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto,
and Nicu Sebe. Whitening for self-supervised representation
learning. In Proceedings of the 38th International Confer-
ence on Machine Learning (ICML), pages 3015-3024, 2021.
1

Maryam Fazel. Matrix rank minimization with applications.
PhD thesis, PhD thesis, Stanford University, 2002. 1

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

(13]

[14]

[15]

(16]

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin,
Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu Zheng, Ke
Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. MME: A
comprehensive evaluation benchmark for multimodal large
language models. arXiv preprint arXiv:2306.13394,2023. 1
Drew A Hudson and Christopher D Manning. Gga: A new
dataset for real-world visual reasoning and compositional
question answering. In 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 6700—
6709, 2019. 1

Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon
Seo, Hannaneh Hajishirzi, and Ali Farhadi. A diagram is
worth a dozen images. In Proceedings of the 14th Euro-
pean Conference on Computer Vision (ECCV), pages 235—
251,2016. 2

Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yix-
iao Ge, and Ying Shan. Seed-bench: Benchmarking mul-
timodal llms with generative comprehension. arXiv preprint
arXiv:2307.16125,2023. 2

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin
Zhao, and Ji-Rong Wen. Evaluating object hallucina-
tion in large vision-language models.  arXiv preprint
arXiv:2305.10355, 2023. 1

Yanwei Li, Yuechen Zhang, Chengyao Wang, Zhisheng
Zhong, Yixin Chen, Ruihang Chu, Shaoteng Liu, and Jiaya
Jia. Mini-gemini: Mining the potential of multi-modality
vision language models. arXiv preprint arXiv:2403.18814,
2024. 3

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee.
Improved baselines with visual instruction tuning. In 2024
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 26296-26306, 2024. 1

Yuliang Liu, Zhang Li, Biao Yang, Chunyuan Li, Xucheng
Yin, Cheng-lin Liu, Lianwen Jin, and Xiang Bai. On the
hidden mystery of ocr in large multimodal models. arXiv
preprint arXiv:2305.07895, 2023. 2

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang
Zhang, Wangbo Zhao, Yike Yuan, Jiaqi Wang, Conghui He,
Ziwei Liu, Kai Chen, and Dahua Lin. Mmbench: Is your
multi-modal model an all-around player? In Proceedings of
the 18th European Conference on Computer Vision (ECCV),
pages 216-233, 2024. |

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei
Chang, Song-Chun Zhu, Oyvind Tafjord, Peter Clark, and
Ashwin Kalyan. Learn to explain: Multimodal reasoning via
thought chains for science question answering. In Advances
in Neural Information Processing Systems 35, pages 2507—
2521, 2022. 1

Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and
Roozbeh Mottaghi. Ok-vqa: A visual question answer-
ing benchmark requiring external knowledge. In 2019
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3195-3204, 2019. 2

Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty,
and Enamul Hoque. Chartqa: A benchmark for question an-
swering about charts with visual and logical reasoning. arXiv
preprint arXiv:2203.10244, 2022. 2



[17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar.
Docvqa: A dataset for vqa on document images. In 202/
IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV), pages 2200-2209, 2021. 2

Yuzhang Shang, Mu Cai, Bingxin Xu, Yong Jae Lee, and Yan
Yan. Llava-prumerge: Adaptive token reduction for efficient
large multimodal models. arXiv preprint arXiv:2403.15388,
2024. 4

Min Shi, Fuxiao Liu, Shihao Wang, Shijia Liao, Subhashree
Radhakrishnan, Yilin Zhao, De-An Huang, Hongxu Yin,
Karan Sapra, Yaser Yacoob, Humphrey Shi, Bryan Catan-
zaro, Andrew Tao, Jan Kautz, Zhiding Yu, and Guilin Liu.
Eagle: Exploring the design space for multimodal 1lms
with mixture of encoders. arXiv preprint arXiv:2408.15998,
2024. 1

Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang,
Xinlei Chen, Dhruv Batra, Devi Parikh, and Marcus
Rohrbach. Towards vqa models that can read. In 2079
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 8317-8326, 2019. 2

Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun
Woo, Manoj Middepogu, Sai Charitha Akula, Jihan Yang,
Shusheng Yang, Adithya Iyer, Xichen Pan, Ziteng Wang,
Rob Fergus, Yann LeCun, and Saining Xie. Cambrian-1:
A fully open, vision-centric exploration of multimodal 1lms.
In Advances in Neural Information Processing Systems 37,
pages 87310-87356, 2024. 3

Tongzhou Wang and Phillip Isola. Understanding con-
trastive representation learning through alignment and uni-
formity on the hypersphere. In Proceedings of the 37th In-
ternational Conference on Machine Learning (ICML), pages
9929-9939, 2020. 1

Long Xing, Qidong Huang, Xiaoyi Dong, Jiajie Lu, Pan
Zhang, Yuhang Zang, Yuhang Cao, Conghui He, Jiaqi Wang,
Feng Wu, and Dahua Lin. Pyramiddrop: Accelerating your
large vision-language models via pyramid visual redundancy
reduction. arXiv preprint arXiv:2410.17247, 2024. 4

Yiwu Zhong, Zhuoming Liu, Yin Li, and Liwei Wang. Aim:
Adaptive inference of multi-modal llms via token merging
and pruning. arXiv preprint arXiv:2412.03248, 2024. 3, 4



