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This supplementary material presents additional details
of Section 1, 3.3, and 4.1. Besides, extra experiments and
analysis further demonstrate the effectiveness and memory
efficiency of MedVSR.

¢ Analogy Between SSM and Linear Attention. We
present a proof of the characteristic of cross state-space
propagation in Sec 3.3 based on the analogy between
SSM and linear attention.

* GPU Memory Consumption Analysis. We provide the
GPU memory consumption of different methods to show-
case the memory efficiency of MedVSR.

* More Implementation Details. We present additional
descriptions on the datasets used in the experiments in
Sec. 4.1 and the optical flow error analysis in Sec. 1.

* More Ablation Studies. We present more comprehen-
sive ablation studies of the design in the proposed Med-
VSR framework.

* Results with Longer Training Schedule. We compare
the results with longer training schedule to explore the
capability of our model.

* Theoretical Analysis of CSSP. We give a theoretical
analysis of the proposed propagation scheme in an infor-
mation bottleneck perspective.

* More Qualitative Results. We display more qualitative
results for visual comparison of the super-resolution per-
formance of our proposed MedVSR.

* Limitations and Future Work. We present the limita-
tions of the proposed MedVSR and potential future di-
rections.

1. Analogy Between SSM and Linear Attention

In Sec. 3.3 in the main paper, we have derived that by
processing two state-space sequences from different frames
with separate projection layers could produce compounded
state-space. We now prove this characteristic through the
analogy between SSM and the linear attention mechanism
based on [3, 4]. Specifically, the SSM of each iteration dur-
ing scanning is computed by:

h; = Ashi—1 + Bz, y; = Cihy, (N

where y; is the output for the token z;. After scanning over
all tokens, the outputs are used to construct an updated fea-
ture Yssm = (Y1, --., ynJ, where N is the number of tokens.
By rewriting it via decompositioning the discretized param-
eters, we have:

hi=A;Ohi1 +B(A;Ox), yi=Cihi, (2

where @ is the Hadammard product, and A; = diag (A;)is
the matrix composed of diagonal elements in A;. Notably,
for each input token, the linear attention mechanism [4] can
be formulated by:

S, =108, +K/ 10V, y=QS;/QZi 3

where S; = >'_ | K[V, Z; = 32'_ K. The outputs
are also constructed to a feature Yot = [y1, ..., yn]- By con-
necting the outputs of the two mechanisms, e.g., Y55, and
Yatt, the analogy from Eq. (2) and (3) shows that the data-
dependent parameters correspond to the query, key, and val-
ues in the attention mechanism: C; ~ Q;, B; ~ KiT,
xz; ~ V,;. To this end, our proposed CSSB that applies
separate input sequences and projection layers to produce
the parameters is similar to the cross-attention mechanism

[2, 5] but with significantly better efficiency.

2. GPU Memory Consumption Analysis

We conducted an analysis to assess the GPU memory con-
sumption of our proposed MedVSR model and compared it
with two other state-of-the-art models, RVRT [6] and IART
[9]. The comparative results are depicted in Fig. 1. For
this analysis, we considered video clips consisting of 50
frames. It is evident from the figure that MedVSR demon-
strates a gradual and moderate increase in GPU memory
consumption with larger input sizes. Specifically, the peak
memory usage ranges from 0.55 GB for inputs of 64x64
pixels to 19.93 GB for inputs of 512x512 pixels. In com-
parison, RVRT and IART exhibit a significantly higher de-
mand for GPU memory, which becomes particularly evi-
dent as the input size grows. Both models encounter out-of-
memory (OOM) errors when processing frames larger than
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Figure 1. Comparison of peak GPU memory consumption for our
MedVSR, RVRT [6], and IART [9] with varied input size.

384 <384 pixels. Notably, even with substantial input sizes,
MedVSR’s memory consumption remains well below the
24 GB threshold, which is well within the capacity of a
typical consumer-grade GPU. These findings validate the
memory efficiency of our MedVSR model. It is also im-
plied that MedVSR can be feasibly integrated into clinical
environments, assisting doctors with diagnostic tasks and
other image analysis needs without the requirement for ex-
pensive, high-performance computing equipment.

3. More Implementation Details

3.1. Datasets and Implementation Details

We construct our datasets by extracting video clips from
the original medical video datasets. Specifically, we divide
the video dataset into training, validation, and testing sets,
and then sample clips with consecutive frames. This ap-
proach ensures that video clips from different sets do not
originate from the same video, thereby maintaining set in-
dependence. We train and test all methods for exactly the
same settings for fair comparison. The spatial resolution
for the HyperKvasir is 576 x720, with 50 frames per clip.
The LDPolyp and EndoVis18 sets have spatial resolutions
of 480x560 and 1024 x 1280, respectively. The spatial reso-
lution of Cataract-101 is 540x720. The diverse spatial res-
olutions and frame rates across these datasets allow us to
evaluate the robustness of our model to varying video qual-
ities and medical scenes.

As introduced in Sec. 3.2 in main paper, our framework
is constructed with multiple forward and backward Cross
State-Space Propagation (CSSP) branches. Specifically, we
employ a sequence of propagations: a backward branch, a
forward branch, another backward branch, and a final for-
ward branch. Hence, we obtain propagated and aligned fea-
tures across a total of four branches. To facilitate the learn-
ing of the compound state-space between frame ¢ — 2 and
t — 1 while improving efficiency, we apply a shared CSSB
layer across the four branches, ensuring that the extracted

consistent feature will be processed and refined in the state-
space of the following branch.

3.2. Optical Flow Error Analysis

In Fig. 1(b) of the main paper, we present an optical
flow error analysis on natural domain and medical domain
datasets. Here, we provide the details of the experimen-
tal setup. Specifically, for a dataset with N video clips
Vi, Va,..., VN, we utilize the averaged forward and re-
versed backward estimated flow to represent the optical
flow error for each dataset. Specifically, for each video
clip V;, we estimate the forward optical flow Of™vard ¢
RV-DXHXxWX2 with a pretrained SpyNet [7].  Simi-
larly, we compute the backward optical flow Obckvard ¢
RV-DXHXWX2 then calculate its reverse flow, which is

égaCkward e RIN-DXHXWx2 1 astly, the optical flow error
Q for the dataset with IV video clips is given by:
N backward —backward
>zt HO - 0;
o=""1" 2 )

N
This error value provides a quantitative measure of the con-
sistency between the forward and backward optical flow es-
timations. A lower value of 2 indicates higher accuracy
in flow estimation in the corresponding dataset, suggesting
that the optical flow is more reliable across the dataset and
and that the frames are easier to align.

4. More Ablation Studies
4.1. Ablation on the Propagation Schemes

Our framework uses two forward and two backward CSSP
branches to propagate the features from both previous and
future frames. To assess the effectiveness of this design,
we compare our method with using only forward or back-
ward propagation in Tab. 1. The results suggest that using
both directions yields the best performance with compara-
ble speed, owing to our efficient module design.

Table 1. Ablation study on different propagation schemes.

Method FLOPs Latency | HyperKvasir LDPolyp
(T) (s) PSNR SSIM | PSNR SSIM
Forward 9.33  1.0936 |31.8925 0.9055|31.7188 0.8656

Backward 9.33  1.0877 |31.9183 0.9056|31.7525 0.8651
Both (Ours) | 9.46  1.1486 |32.0958 0.9069 | 31.8333 0.8673

4.2. Ablation on the Number of Propagation Frames

In CSSB, we propagate the ¢ — 2-th frame feature as the dis-
tant support frame. We further ablate the number of prop-
agation frames from ¢ — 2 to ¢ — 7 in Tab. 2. Using more
distant frames (>4) negatively impacts both efficiency and
performance. This degradation is likely due to the sharp
transitions in medical videos, which result in a lack of rel-
evant supporting features in these longer-distance frames.
Consequently, we select ¢ — 2 as the optimal choice.



Table 2. Ablation study on different number of frames propagated.

Metric t—2 t—3 t—4 t—5 t—6 t—17
PSNR [32.0958 32.0962 31.9858 31.9103 31.8903 31.8061
SSIM 0.9069 0.9065 0.9054 0.9050 0.9052 0.8907
FLOPs 9.46 9.71 9.96 1020 1044  10.67
Latency | 1.1486 1.4109 1.9085 2.2201 2.7136 3.2977

Table 3. Ablation study on the cross state-space with Mamba2 and
cross-attention.

Method FLOPs Latency | HyperKvasir LDPolyp
(T) (s) PSNR SSIM | PSNR SSIM
Attention 9.48  1.5591 |31.9106 0.9066 |31.8142 0.8676

Linear Attention | 9.47  1.1892 |31.8628 0.9068 |31.7989 0.8660
Mamba2 (Ours) | 9.46 1.1486 | 32.0958 0.9069 | 31.8333 0.8673

Table 4. Ablation study on more scaling factors.

Factor | Metric BVSR BVSR++ VSRT RVRT IART MedVSR
PSNR 36.210 36.891 37.107 35.619 37.308 37.756
SSIM 0.9326  0.9381 0.9380 0.9271 0.9389 0.9401
PSNR 27.354 27.801 28.052 27.096 28.332 28.4262
SSIM 0.8606 0.8630 0.8635 0.8051 0.8688 0.8734

2X

6x

4.3. Ablation on the Cross State-Space and Cross-
Attention

In CSSB, we propose a cross state-space mechanism with
Mamba2 for propagating relevant features from distant
frames. To verify the effectiveness of this design, we
present an ablation of replacing Mamba with cross-attention
in Tab. 3, and observe that attention mechanisms need
larger computational overhead but have comparable perfor-
mance, due to its quadratic computation complexity. Even
with linear attention, using Mamba in the proposed CSSB
achieves superiority in both performance and latency.

4.4. More Scaling Factors

Beyond 4x, we examined MedVSR on 2x and 6x in Tab.
4. MedVSR also performs better than existing models for
both smaller and larger scaling factors, suggesting robust-
ness and adaptability in varied situations.

5. Results with Longer Training Schedule

To further explore the capabilities of our model, we ex-
tended the training schedule to 300,000 training iterations,
and test the results on the HyperKvasir testing dataset. [1].
The results are recorded in Tab. 5. It is observed that
our MedVSR remains effective and outperforms compared
methods, which demonstrate that the strong capability and
generalization ability of MedVSR can be further explored
with longer training schedules.

Table 5. Results on the HyperKvasir testing dataset [ 1] of different
methods with longer training schedule.

Metric | BasicVSR  BasicVSR++ MedVSR
PSNR 32.8695 32.6034 33.0981
SSIM 0.9046 0.9020 0.9089

VSRT MedVSR

VSRT MedVSR

Figure 2. Qualitative comparison with VSRT.

6. Theoretical Analysis of CSSP

Our CSSP mechanism is inherently connected to the Infor-
mation Bottleneck (IB) principle [8], which aims to effi-
ciently compress the information from the input while pre-
serving its relevance to the target variable. In our sequen-
tial frame modeling, the propagation can be represented
as a Markov chain, F;_o — F;_; — F;, where each
frame only depends on its immediate predecessor. Under
the IB framework, at each propagation step, we consider
F,_1 as a "’bottleneck” variable that mediates the informa-
tion flow from past frame F;_o to current frame F;. The
objective can thus be viewed as maximizing the mutual in-
formation I(F;_1; F}) to retain features critical for accu-
rate super-resolution. Meanwhile, by implicitly reducing
I(F;_9; F;—1), CSSP encourages the framework to sup-
press noise or redundancy accumulated from earlier frames,
allowing only salient and informative features to be prop-
agated. This behavior is reflected empirically in our re-
sults (as visualized in Fig. 7 of the main paper), where we
observe reduced noise and sharper structural details in the
propagated feature representations.

7. More Qualitative Results

In Fig. 2, we present more results with significant gains over
VSRT on HyperKvasir dataset. Moreover, in Fig. 3 and
4, more visual comparisons between existing VSR methods
and the proposed MedVSR are provided. It can be observed
that, the compared methods tend to suffer from losing tex-
tures and distorting shapes, while our proposed method can
continuously generate high quality super-resolved frames
with clear edges and detailed structures, such as subtle wrin-
kles and vessels, and textures on the instruments.



8. Limitations and Future Work

One limitation is that, some medical imaging processes in-
volve 4D data (3D spatial dimensions plus time), such as
functional MRI or cardiac imaging. Our model is primarily
designed for videos with 2D frames and might require addi-
tional adaptation to handle temporal dynamics in 4D scenes.
Besides, Mamba operations may not be well-supported on
mobile or wearable surgical devices at present. Future work
will focus on extending support for 4D data and optimiz-
ing the model for compatibility with edge devices, ensuring
robustness and efficiency in real-time applications.

References

[1] Hanna Borgli, Vajira Thambawita, Pia H Smedsrud, Steven
Hicks, Debesh Jha, Sigrun L Eskeland, Kristin Ranheim Ran-
del, Konstantin Pogorelov, Mathias Lux, Duc Tien Dang
Nguyen, Dag Johansen, Carsten Griwodz, Hakon K Stens-
land, Enrique Garcia-Ceja, Peter T Schmidt, Hugo L Ham-
mer, Michael A Riegler, Pal Halvorsen, and Thomas de Lange.
HyperKvasir, a comprehensive multi-class image and video
dataset for gastrointestinal endoscopy. Scientific Data, 7(1):
283, 2020. 3

[2] Chun-Fu Richard Chen, Quanfu Fan, and Rameswar Panda.
Crossvit: Cross-attention multi-scale vision transformer for
image classification. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 357-366,
2021. 1

[3] Dongchen Han, Ziyi Wang, Zhuofan Xia, Yizeng Han, Yifan
Pu, Chunjiang Ge, Jun Song, Shiji Song, Bo Zheng, and Gao
Huang. Demystify mamba in vision: A linear attention per-
spective. arXiv preprint arXiv:2405.16605, 2024. 1

[4] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and
Francois Fleuret. Transformers are rnns: Fast autoregressive
transformers with linear attention. In International Confer-
ence on Machine Learning, pages 5156-5165. PMLR, 2020.
1

[5] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip:
Bootstrapping language-image pre-training for unified vision-
language understanding and generation. In International Con-
ference on Machine Learning, pages 12888-12900. PMLR,
2022. 1

[6] Jingyun Liang, Yuchen Fan, Xiaoyu Xiang, Rakesh Ranjan,
Eddy Ilg, Simon Green, Jiezhang Cao, Kai Zhang, Radu Tim-
ofte, and Luc V Gool. Recurrent video restoration transformer
with guided deformable attention. Advances in Neural Infor-
mation Processing Systems, 35:378-393, 2022. 1,2

[7] Anurag Ranjan and Michael J Black. Optical flow estima-
tion using a spatial pyramid network. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2017. 2

[8] Naftali Tishby, Fernando C Pereira, and William Bialek.
The information bottleneck method. arXiv preprint
physics/0004057, 2000. 3

[9] Kai Xu, Ziwei Yu, Xin Wang, Michael Bi Mi, and Angela Yao.
Enhancing video super-resolution via implicit resampling-
based alignment. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 2546—
2555,2024. 1,2



BasicVSR++
RVRT

7
= 3
< b
>
+
&
2 =
g o
(5]
o
&
= =
< 9]
>
+
x MG/01/2013
2 30:;‘:‘:%2)
g o N
@© :N A3
o
_ b 45/01/2013
o =400:21:12> =
<) L VP:2
A3 =8 A3
1 Drop +
0 But n"é — -
wn (O]
> < =
© o O
%) =
©
o
00:00:01
&
= 3
< ]
>

Figure 3. Qualitative comparison on HyperKvasir dataset.
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Figure 4. Qualitative comparison on LDPolyp, EndoVis18, and Cataract-101 datasets.
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