
Mind the Gap: Aligning Vision Foundation Models to Image Feature Matching

Supplementary Material

1. Discussion on feature behavior

Given the constraints imposed by limited resources (e.g.,
computational capacity, dataset availability, and time), our
investigation is primarily centered on the empirical analysis
of existing models. Unfortunately, conducting comprehen-
sive ablation studies to isolate the factors influencing fea-
ture properties such as data composition, training method-
ologies, and architectural variations, exceeds our current re-
source capabilities. Nevertheless, we propose several con-
ceptual hypotheses to account for the observed differences
disparities between SD [26] and DINOv2 [23]:

Training Paradigms. The core distinction between diffu-
sion models and the other models is that they are genera-
tive. The training objective of diffusion models, which in-
volves a coarse-to-fine reconstruction loss, necessitates the
generation of informative features for every object within
the image. For instance, since the model is trained to gen-
erate diverse representations of objects (e.g., a big car and a
small car running), it must inherently require the model con-
tain representations of every car. This stands in contrast to
non-generative models, which typically employ either con-
trastive learning objectives (e.g., CLIP [42]) or discrimina-
tive objectives (e.g., ResNet [13], ViT [8]). Such objectives
often result in the loss of instance-specific and object-level
details.

Architecture Differences. Conversely, the self-attention
mechanism in SD’s UNet architecture that governs the de-
pendencies between different regions of the image. This
mechanism also enables the generation of structurally co-
herent objects and facilitates the explicit representation of
object instances.

Despite the absence of comprehensive ablation stud-
ies, several experimental observations provide valuable in-
sights:

Model Capacity : In our experiments as shown in Figure 4
of main tex and Tabel 1, we evaluate reduced-capacity ver-
sions of both SD. The distilled variants of SD exhibit prop-
erties consistent with the base model, yield performance im-
provements on the IMIM benchmark. These findings sug-
gest that model capacity alone does not fully account for the
observed feature characteristics.

Training Protocols : As shown in Table 1, we examine
models with identical architectures but differing training
regimes. For instance, the SD-1-5 model undergoes fine-
tuning with distinct step counts and datasets compared to
SD-1-3 (195,000 steps on “laion-aesthetics” versus 595,000
steps on “laion-improved-aesthetics”). Similarly, the SD-2-

1-base model is trained on the filtered LAION-5B dataset.
Despite these variations, all three models demonstrate com-
parable performance, indicating robustness to moderate dif-
ferences in training protocols and datasets.

Table 1. Ablation results of different variants of SD models.

Method MegaDepth dataset IMIM
AUC@5◦ AUC@10◦ ACU@20◦

SD-tiny 58.5 73.2 83.8 84.1
SD-small 60.0 74.5 85.0 86.5
SD-1-3 60.5 75.3 85.7 88.0
SD-1-5 60.8 75.6 85.8 88.3

SD-2-1(ours) 61.2 76.1 85.8 88.7

In summary, we believe that trying to investigate the un-
derlying causes and establishing empirical evidence repre-
sents a compelling research direction and a promising av-
enue for future work.

2. Perliminaries

2.1. Denoising UNet of Diffusion Model

Denoising architecture of a Text-to-Image diffusion model
is elaborated starting with its various layers. In the Latent
Diffusion Model [26], the diffusion process occurs within
the latent space of a previously trained image autoencoder.
This model utilizes a U-Net [27] structure, which is condi-
tioned on a guiding text prompt T . The U-Net consists of
multiple layers, each consists three distinct types of blocks:
(1) a residual block, (2) a self-attention block, and (3) a
cross-attention block, as depicted in Figure 1. During each
step of the denoising sequence, the noisy latent code zt
serves as the input to the U-net. The residual block pro-
cesses the image features zt to generate intermediary fea-
tures φ(zt). In the self-attention block, the features φ(zt)
are transformed into ”queries” Q, ”keys” K, and ”values”
V . Each query vector qi,j , which represents a specific patch
at spatial location (i, j) in Q, produces a self-attention map.

The final block, the cross-attention block, promotes the
interaction between the spatial image features from the self-
attention block and the text prompt T ’s token embeddings.
This mechanism is similar to the one in the self-attention
layer, except that here, Q is sourced from the spatial fea-
tures of the prior self-attention layer, whereas K and V are
derived from the text prompt’s token embeddings.



UNet Layer
Resdiual
Blcok

Self-attention
Blocks

Cross-attention
Blocks

×N ×N

Prompt

Figure 1. Block of Stable Diffusion UNet layer.

3. Implementation Details
3.1. Diffusion Models
The total number of time steps T for Stable Diffusion (SD)
models is set to 1000. UNet architecture includes downsam-
pling blocks, middle blocks, and upsampling blocks. We fo-
cus on extracting features from the upsampling blocks only.
The UNet in SD consists of 4 upsampling blocks contained
15 layers. We utilize the feature maps from the n-th upsam-
pling block as the final diffusion feature. The maximum
prompt length supported by Stable Diffusion is 77 tokens,
which includes two special tokens: SOS and EOS. Con-
sequently, we configure the prompt length to 75 in CIPM
thereby utilizing all 77 token positions.

3.2. Position Encoding
We employ the 2D extension of Rotary Position Encoding
[30] to encode the relative positions between coarse features
within self-attention modules. 2D RoPE enables the model
to focus more on the interaction between features rather
than their specific locations, which enhances the ability to
capture the context of local features.

4. More Experiments Results
4.1. Visual Localization

Datasets and Evaluation Protocols. Visual localization is
a critical task in image matching, aiming to determine the 6-
DoF poses of query images based on a 3D scene model. The
Aachen dataset comprises 6,697 daytime and 191 nighttime
images, emphasizing the challenge of matching under sig-
nificant illumination variations, particularly at night. We
report the metrics separately for the daytime and nighttime
subsets. Following the benchmark in [34], we compute
query poses using the prescribed methodology. The can-
didate image pairs are identified using the pre-trained HLoc

[28] system following [1].

Results. As shown in Table 2, regarding the Aachen V1.1
dataset, IMD yields strong competitive outcomes. Overall,
the proposed method demonstrates strong performance and
exhibits excellent generalization capabilities across a wide
range of visual recognition tasks. These evaluations high-
light the versatility of our approach in addressing diverse
and complex problem scenarios.

Table 2. Results of Visual Localization on Aachen v1.1 Dataset.

Method Day Night

(0.25m,2◦)/(0.5m,5◦)/(1.0m,10◦)

SP [7]+SG [29] CVPR’20 89.8 / 96.1 / 99.4 77.0 / 90.6 / 100.0
LoFTR [31] CVPR’21 88.7 / 95.6 / 99.0 78.5 / 90.6 / 99.0
CasMTR [2] ICCV’23 90.4 / 96.2 / 99.3 78.5 / 91.6 / 99.5

AspanFormer [3] ECCV’22 89.4 / 95.6 / 99.0 77.5 / 91.6 / 99.5
PRISM [1] ACMMM’24 89.4 / 96.2 / 99.3 78.5 / 91.1 / 99.5

IMD (Ours) 90.2 / 96.2 / 99.0 77.5 / 91.1 / 99.5

Table 3. Results of Homography Estimation on Hpatches Dataset.

Categeory Method Homography est. AUC

@3px @5px 10px mAUC

Zero-shot
CLIP [24] ICML’21 46.6 60.9 73.0 60.2
DINOv2 [23] Arxiv’23 48.6 62.7 74.9 62.1
DIFT [32] NeurIPS’23 54.1 64.5 76.3 65.0

Sparse

R2D2 [25]+NN NeurIPS’19 50.6 63.9 76.8 63.8
D2Net [9]+NN CVPR’19 23.2 35.9 53.6 37.6
DISK [37]+NN NeurIPS’20 52.3 64.9 78.9 65.4
OmniGlue [14] CVPR’24 55.3 69.0 82.5 68.9
SP [7]+SG [29] CVPR’20 53.9 68.3 81.7 68.0

Semi-Dense

LoFTR [31] CVPR’21 65.9 75.6 84.6 75.4
Quadtree [33] ICLR’22 66.3 76.5 84.9 75.8
ASpanFormer [3] ECCV’22 67.4 76.9 85.6 76.6
Effcient LoFTR [39] CVPR’24 66.5 76.4 85.5 76.1
EcoMatcher [4] ECCV’24 68.0 77.8 86.4 77.4
JamMa [21] CVPR’25 68.1 77.0 85.4 76.8
HomoMatcher [38] AAAI’25 70.2 79.6 87.8 79.2
SRMatcher [18] ACMMM’24 71.2 79.3 87.0 79.2
ASTR [40] CVPR’23 71.7 80.3 88.0 80.0
CasMTR [2] ICCV’23 71.4 80.2 87.9 79.8
PRISM [1] ACMMM’24 71.9 80.4 88.3 80.2
IMD (Ours) 73.9 82.0 88.6 81.5

Dense
DKM [10] CVPR’23 71.3 80.6 88.5 80.1
PMatch [43] CVPR’23 71.9 80.7 88.5 80.4
RoMa [11] CVPR’24 72.2 81.2 89.1 80.8

4.2. The extend version of Homography Estimation
Table 3 shows the extend version of performance of vari-
ous methods for homography estimation on HPatches. It
is evident that, even compared to dense methods, our ap-
proach achieves the highest accuracy across multiple thresh-
olds and in terms of mean average precision, demonstrates
the effectiveness of our approach.

4.3. The extend version of Pose Estimation
Table 4 shows the extend version of results of multi in-
stances evaluation on IMIM and two-view pose estimation
on the MegaDepth, ScanNet datasets. Our proposed IMD
outperforms across all evaluation metrics compared with
spare and semi-dense methods on both benchmarks signif-



Table 4. Results of multi instances evaluation on IMIM and two-view pose estimation on the MegaDepth [16], ScanNet [6] datasets.
Methods are grouped into 3 groups: 1) methods that are zero-shot and not fine-tuned on the training data, 2) sparse methods, 3) semi-dense
methods. All the IMD result have gray background for easy lookup and annotate best results. The extend version are provided in the Suppl.
B, G denote the model’s size.

Category Method MegaDepth ScanNet IMIM
AUC@5◦ AUC@10◦ AUC@20◦ AUC@5◦ AUC@10◦ AUC@20◦

Zero-Shot
CLIP [24] ICML’21 30.8 48.1 63.2 10.1 20.6 31.3 54.4
DINOv2 [23] Arxiv’23 32.5 50.8 65.3 13.0 28.5 40.8 57.9
DIFT [32] NeurIPS’23 38.4 55.9 70.5 15.7 32.0 45.1 61.2

Sparse
SP [7]+NN CVPRW’23 31.7 46.8 60.1 7.5 18.6 32.1 55.9
OmniGlue [14] CVPR’24 47.4 65.0 77.8 31.3 50.2 65.0 77.6
SP [7]+LG [17] ICCV’23 49.9 67.0 80.1 14.8 30.8 47.5 60.5

Semi-Dense

LoFTR [31] CVPR’21 52.8 69.2 81.2 16.9 33.6 50.6 68.9
RCM [20] ECCV’24 53.2 69.4 81.5 17.3 34.6 52.1 -
Effcient LoFTR [39] CVPR’24 56.4 72.2 83.5 19.2 37.0 53.6 70.6
EcoMatcher [4] ECCV’24 56.5 72.0 83.4 - - - -
HomoMatcher [38] AAAI’25 57.8 73.5 84.4 22.1 40.9 57.5 -
TopicFM [12] AAAI’23 58.2 72.8 83.2 17.3 34.5 50.9 76.5
MESA ASpan [41] CVPR’24 58.4 74.1 84.8 - - - -
CasMTR [2] ICCV’23 59.1 74.3 84.8 22.6 40.7 58.0 79.2
PRISM [1] ACMMM’24 60.0 74.9 85.1 23.9 41.8 58.9 -
IMD (Ours) 61.2 76.0 85.8 29.8 48.3 64.2 88.7

Dense DKM [10] CVPR’23 60.4 74.9 85.1 26.6 47.1 64.2 75.9
RoMa [11] CVPR’24 62.6 76.7 86.3 28.9 50.4 68.3 79.7

icantly. However, it still falls short of the current state-of-
the-art dense matching method RoMa. Our approach pri-
oritizes overcoming misalignment in the adaptation of the
misalignment model to the matching task, rather than driv-
ing final performance.

4.4. Ablations about Visual Representations
We compare the internal representations of text-to-image
diffusion models with those of other state-of-the-art pre-
trained models. Specifically, we evaluate a range of pre-
trained models trained under different paradigms, including
discriminative objectives, contrastive learning objectives,
and pre-trained with text supervision. In all experiments,
the weights of the pre-trained models are kept frozen, and
we employ identical training hyperparameters as those used
in our proposed method. For each category, we select the
best-performing and largest publicly available models to en-
sure a comprehensive comparison. Table 5 below shows
that IMD outperforms all pre-trained models by a large mar-
gin on both datasets, especially on IMIM. This highlights
that the internal representation of the diffusion model is
significantly more effective for feature matching and it can
handle multi-instance scenarios well.

4.5. Ablations about Diffusion Time Steps
We further conduct more experiments about which diffu-
sion step(s) are most effective for feature extraction. The

Table 5. Comparison with the state-of-the-art visual representa-
tions. B, L denote the model’s size.

Training MegaDepth dataset IMIM

Model Data AUC@5◦ AUC@10◦ ACU@20◦ dataset
Pre-trained with discriminative objectives
DeiT-v3-B[35] IN-21k 57.9 73.5 83.8 76.4
Swin-B[19] IN-22k 57.5 73.2 83.6 74.0
Twins-SVT-L[5] IN-1k 56.9 72.8 83.5 75.5
Pre-trained with contrastive learning objectives
CLIP-L[24] WIT 57.6 73.1 83.5 76.3
DINOv2-B[23] IN-22k 57.8 73.5 83.7 75.5
Pre-trained with text
SLIP-B[22] YFCC15M 58.0 73.3 83.6 77.3
IMD LAION 61.2 76.0 85.8 88.7

level of noise distortion introduced to the input image es-
calates as the value of t increases. In the context of sta-
ble diffusion [26], the process comprises a total of 1000
time steps. As illustrated in Table 6, all evaluation met-
rics exhibit a decline as t increases, with the optimal per-
formance observed at t = 0, which aligns with our final
selected value. Combining features from three time steps,
0, 100, and 200, results in accuracy comparable to using
only t = 0, but at the cost of being three times slower. This
phenomenon also confirms the findings of DIFT [32], that
larger values of t tend to produce features that are more se-
mantically meaningful, whereas smaller values of t empha-
size low-level details. The optimal selection of t depends
on the specific requirements of the correspondence task, as



different tasks may necessitate distinct balances between se-
mantic and low-level features. For instance, tasks involv-
ing semantic correspondence are likely to benefit more from
features with strong semantic representations as the setting
of t = 261 in SD4Match [15]. However, feature matching
tasks achieve better performance with features that capture
low-level details with smaller t.

Table 6. Ablation results of different diffusion time steps.

Method MegaDepth dataset IMIM
AUC@5◦ AUC@10◦ ACU@20◦

0 61.2 76.0 85.8 88.7
100 60.9 75.7 85.8 88.1
200 60.1 74.9 85.7 87.2
500 59.4 74.2 85.0 86.3

0+100+200 61.4 75.8 86.0 88.6

4.6. Ablations about Index of UNet Blocks
The index n of the U-Net upsampling block to extract the
feature map, choose from [0, 1, 2, 3]. If n = 0, the out-
put size would be 1/32 of image size; if n = 1, it would
be 1/16; if n = 2 or 3, it would be 1/8. It is worth noting
that our IMD employ the coasre-to-fine strategy following
previous semi-dense methods [3, 31]. Large a scale differ-
ence may lead to a failure of refinement in the second stage,
so we conduct experiments about n = 1, 2, 3. As shown
in Table 7, when we extend our model with a more coarse
level (1/16), IMD fails to produce accurate matching results,
these matching errors inevitably propagate into subsequent
learning stages.

Table 7. Ablation results of different index of UNet blocks.

Method MegaDepth dataset IMIM
AUC@5◦ AUC@10◦ ACU@20◦

n = 1(1/16) 59.3 74.7 85.0 86.1
n = 2(1/8) 61.2 76.0 85.8 88.7
n = 3(1/8) 61.3 76.1 85.8 88.5

4.7. More Qualitative Comparisons
More qualitative results on the MegaDepth dataset and
IMIM dataset are shown in Figure 2 and Figure 3, show-
ing the effective of our method.

5. Time Cost
Our IMD requires only a single inference step for diffusion
extraction, while t = 0 mitigating the inversion steps. As
a result, the computational overhead is comparable to that
of competing contrastive-learning based feature extraction

methods when processing images of identical resolution.
We reported the running time of matching each image pair
in the ScanNet datasets for comprehensively understanding.
All results are based on a singe NVIDIA 3090 GPU: IMD
takes 165 ms vs. RoMa’s 303 ms.

6. Limitation
The incorporation of the Stable Diffusion architecture, de-
spite requiring merely a single forward pass, substantially
escalates the computational overhead associated with cor-
respondence estimation when compared to the methods that
do not use the foundation models. Regarding practical ef-
ficiency, it is noteworthy that IMD demonstrates compara-
ble computational speed to other widely-used contrastive-
learning based feature extraction methods. Specifically, as
detailed in Sec 5. We believe with the integration of ad-
vanced feature matching techniques which focus on the ef-
ficiency [17, 39], could potentially enhance both the perfor-
mance and computational efficiency of IMD.

7. Future Work

The Scalability of IMD. Our investigation primarily fo-
cuses on UNet-based diffusion models due to their cur-
rent prevalence as state-of-the-art text-to-image generation
systems. However, we posit that analogous feature repre-
sentations may exist in alternative diffusion architectures,
supported by the following evidence: (1) Recent investiga-
tions [36] have demonstrated the presence of structural and
appearance features in vision transformer-based architec-
tures; (2) Empirical observations have consistently revealed
instance-level features across multiple UNet diffusion vari-
ants. Based on these findings, we hypothesize that other
diffusion model implementations (e.g., DiTs) may exhibit
similar or potentially superior instance feature characteris-
tics. This is a compelling direction for our future work.

Aggregation of Multi-layer Diffusion Features. All ex-
perimental results presented in this work utilize single-layer
diffusion features exclusively. Preliminary investigations
in Sec 4.5 suggest that feature aggregation across multiple
time steps could yield performance improvements. How-
ever, such an approach introduces numerous design con-
siderations (e.g., aggregation strategies) and hyperparam-
eters (e.g., layer selection, timestep choices, and weight-
ing schemes) that may require task-specific optimization.
While parameter tuning could potentially enhance perfor-
mance, it risks conflating feature quality with optimiza-
tion efficacy. Given our primary objective of overcoming
the misalignment between foundation models and feature
matching, we employ the simplest configuration using raw,
single timestep/layer features. The development of multi-
layer/timestep diffusion feature pyramids remains an impor-
tant direction for future research.
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Figure 2. Qualitative outdoor matching results compared with LoFTR [31], CasMTR [2] and ours IMD. The red color indicates epiploar
error beyond 1× 10−4 (in the normalized image coordinates).

DINOv2 LoFTR OursRoMa

Figure 3. Qualitative IMIM matching results compared with DINOv2 [23], LoFTR[31], RoMa [11] and ours IMD. Green indicate the
correct matching result. The results show scenarios where existing similar objects in the scene, whereas our proposed PDM effectively
distinguishes and match the target object with high precision despite significant variations (view angle, pose).
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