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Supplementary Material

A. Appendix
In this section, we provide detailed information about our
work. In Suppl. A.1, we describe the procedure for gener-
ating the ground truth correspondences. In Suppl. A.2, we
outline the strategy for selecting reference images in our ex-
periments. In Suppl. A.3, we present the design of MixRI+,
the variant of MixRI. Next, we discuss some limitations
and failure cases in Suppl. A.4 and detail the evaluation
datasets in Suppl. A.5. We also provide qualitative results in
Suppl. A.6. In Suppl. A.7 we discuss the balance between
time and memory cost in different methods. Finally, we de-
tail the training process in Suppl. A.8 and address ethical
considerations in Suppl. A.9.

A.1. Ground Truth Correspondences
We train our network entirely with synthetic images, us-
ing the ground truth 3D information provided in GSO-
Datasets [9]. To sample the 3D object points, we sample

the 2D image points in all reference images and unproject
the 2D image points into the 3D space. For each reference
image, we randomly select M image points within the object
mask and find their corresponding points along all the other
reference images with the query image using the ground
truth pose and rendered depth. We also use depth to judge
whether the corresponding location is occluded and set τ to
4mm. In our default setting, M is 10, and S is 24, which
produces N = 240 points in total.

Because depth can have a sharp change in edge, we use
the close operation in morphology to shrink the mask. We
set the kernel size to 3 × 3 and repeat 3 iterations. If the
mask is really small and cannot sample enough points, we
just repeat the sampled points.

We use the same procedures during the evaluation to
produce the correspondences along all the reference images
as training procedures, except for the query image.

We also use some augmentations during training, such

Figure 1. Training samples. Each row represents one batch. The left-most image is the query image and the remaining are 12 reference
images. We show the correspondences across all reference images with the query image. Solid points represent visible points, while hollow
points indicate occluded points. For the query image, some points are projected outside of the image. We set them to the location of [−1,−1]
and regard them as occluded points during training.



as Gaussian blur, contrast, brightness, sharpness, and color
change, as done in [10]. We provide some illustrations to
show the training samples in Fig. 1.

A.2. Reference Images Selection Strategy
In the default setting, our method uses only 24 reference
images to have a balance of accuracy and performance. To
demonstrate the generality of our method, all reference im-
ages are randomly selected from a reference image bank for
each inference. In detail, to generate the reference image
bank, we generate 162 reference images from viewpoints
defined on a regular icosphere, which is created by subdi-
viding each triangle of the Blender icosphere primitive into
four smaller triangles, just as [10] does. We use the farthest
sampling strategy (FPS) during each inference session to
sample S (in most experiments, S = 24) reference images.
Because in-plane rotations do not provide additional informa-
tion about the visibility of 3D object points, we only measure
the out-of-plane distance between two rotations:
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where R̂i means rotation removed the in-plane compo-
nents from the origin rotation matrix Ri. It is worth mention-
ing that for real-world scenarios, we can omit the process of
establishing the reference image bank and directly generate
only S reference images, pre-sampling the corresponding re-
lationships between them in advance, as stated in Suppl. A.1.

A.3. MixRI Variant

MixRI is designed for faster inference, a smaller network
cache, and faster preparation of reference images. However,
we also consider scenarios where more reference images are
available, allowing for further accuracy improvements. To
effectively select the most relevant reference images from
a large reference image pool, we follow other approaches
[10, 11] to identify the most suitable reference images. Here
we use the same reference image bank as stated in Suppl. A.2
which has 162 reference images in total. We use the fea-
ture extractor from [10] as our feature extractor, as it also
mitigates the impact of in-plane rotations, similar to our
framework. Following [10], we identify the top-1 candidate
with the most similar out-of-plane rotations and then select
three additional reference images based on their rotation
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Figure 2. Failure Case. The bowl is texture-less and nearly occluded, which make the matching really challenge. The top shows the matching
results, where the point on the far left image is the predicted matched point, the second image from the left shows the ground truth matched
point, and the remaining images are reference images, totaling 12. So if the lines between the first and second images on the left are parallel
and of equal length, it means the match is correct. For ease of viewing, we randomly sampled 10 points predicted to be visible. The lower
part of each result set displays the estimated results. The far-left image is the RGB image, the middle image shows the projection of the
ground truth pose (in green) and the estimated pose (in red). The image on the far right displays the error heatmap calculated between
the ground truth pose and the predicted pose which darker red indicates higher error with respect to the ground truth pose (legend: 0 cm

5 cm).



alignment with the retrieved reference image. To effectively
gather the closest viewpoint information, we train a MixRI
variant which takes only four relevant reference images but
keeps the model structure, model size the same. This variant
is designed for situations where more reference images are
available and the reference images have closer relationships
to each other.

A.4. Limitations and Failure Cases
The limitations of our method stem from classic challenges
in matching, such as matching weak textures and similar
areas. Our method may fail when applied to highly texture-
less objects. Although we try to handle such situations using
attention mechanisms, our method can struggle to match
between similar patches, especially when the detection re-
sult only captures a part of the whole object or object that is
significantly occluded. As shown with the bowl in Figure 2,
it is almost completely obscured and with very weak texture.

GigaPose FoundPose MixRI

Figure 3. Qualitative comparison with GigaPose [10] and Found-
Pose [11].We compare our method with GigaPose and FoundPose,
which are two leading methods in speed and accuracy. All the
results are visualized in error heatmap calculated between the
ground truth pose and the predicted pose which darker red indicates
higher error with respect to the ground truth pose (legend: 0 cm

5 cm).

As the visualization shows, the points considered visible in
the query image actually mostly lie in the occluded areas,
leading to an incorrect pose estimation in the end.

A.5. Evaluation Datasets

We evaluate our method on seven core BOP datasets [7],
including LM-O [1], YCB-V [12], T-LESS [5], TUD-L [6],
IC-BIN [3], HomebrewedDB(HB) [8] and ITODD [4]. These
datasets have 132 objects in total, which are never seen
during the training stage. They include the general challenge
of the RGB pose estimation, such as illumination change,
texture-less object, strong occlusion, and cluttered scenes.

A.6. Qualitative Results

In Fig. 3, we present qualitative comparisons with GigaPose
[10] and FoundPose [11] , which are the two leading methods
in speed and accuracy, respectively. Our method can make
some mistakes especially in texture-less objects and some
really small objects. However, we still achieve comparable
results and can have better performance in some cases.

We illustrate more qualitative examples of our method
in Fig. 4 for YCB-V [12] and in Fig. 5 for LM-O [1]. All
illustrations are composed of the original RGB image, the
corresponding matching results, the projection of the object
model with ground truth pose and predicated pose, and the
error heatmap.

A.7. Time & Memory Balance

In Table 1, we compare the feature extraction costs for a
single object on an RTX 4090 GPU. Both GigaPose [10] and
FoundPose [11] require significant time for feature extrac-
tion and pre-processing. On one hand, they rely on a large
number of reference images, increasing the time required
to extract features from all reference images. On the other
hand, they include a view selection stage to identify the clos-
est reference image, introducing additional pre-processing
overhead, such as clustering. This time-consuming process
follows a space-for-time strategy—pre-processing during
the inference stage and caching them, thus leading to in-
creased memory consumption. For memory-limited devices,
this constraint reduces the number of objects whose poses
can be estimated, as additional memory is required to store
reference images, pre-extracted features, and large network
parameters. In contrast, MixRIs are highly efficient. Thanks
to the fewer reference images, we omit pre-extraction and
instead perform feature extraction during inference, signifi-
cantly reducing memory requirements with no cache needed.
With fewer reference images and a lightweight network,
MixRIs are more suitable for memory-constrained devices
but still keep fast inference speed.



Method GigaPose [10] FoundPose [11] MixRI(12) MixRI(24)
Time 11.6 s 40 s 21 ms 42 ms

Memory 233.5 M 523.5 M 9.2 M 18.4 M

Table 1. The time and memory cost for processing all the refer-
ence images of one object. MixRIs are much more efficient than
GigaPose and FoundPose, making it more suitable for real-world
applications.

A.8. Training Details
We train our network from scratch. During training, we use
the GSO-Datasets provided by MegaPose [9], which includes
over 1 million images generated by BlenderProc [2]. We train
our networks using PyTorch with the AdamW optimizer
with β = (0.9, 0.999) and 5e-4 weight decay. The learning
rate is set to 1e-4 and the warm up is 200 iterations. We
train our network around 600k iterations, which spend about
one week on four 4090 GPUs with batch size 8 on each.
We use 12 reference images to train our network and N is
set to 240. All images are cropped to 224 × 224. We also
add some augmentations as done in [10] like: Gaussian blur,
contrast, brightness, sharpness, and color change. The feature
dimension D is set to 256. The number of iterations for
each module n0, n1, n2, n3 are set to 4, 2, 2, 2, respectively.
Besides, for each module, the weights are shared during the
iteration. We set τocc = 0.8.

For the training losses, the predicted 2D coordinates are
normalized to the range [−1, 1] for stable training. The Hu-
ber delta is set to 0.0357, corresponding to 4 pixels before
normalization.

A.9. Ethics
This research contributes to the development of object pose
estimation, with potential applications in robotics, aug-
mented reality (AR), and machine vision in general. While
many of those applications could bring societal benefits (e.g.
workload decrease through automation, AR-based teaching
or assistance), it could also be used for unethical purposes.
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Figure 4. Qualitative results on YCB-V [12]. We presented two sets of results, with the top of each set showing the matching results. In
these, the point on the far left image is the predicted matched point, the second image from the left shows the ground truth matched point,
and the remaining images are reference images, totaling 12. So if the lines between the first and second images on the left are parallel and of
equal length, it means the match is correct. For ease of viewing, we randomly sampled 10 points predicted to be visible. The lower part of
each result set displays the estimated results. The far-left image is an RGB image, the middle image shows the projection of the ground truth
pose (in green) and the estimated pose (in red). The image on the far right displays the error heatmap calculated between the ground truth
pose and the predicted pose which darker red indicates higher error with respect to the ground truth pose (legend: 0 cm 5 cm).
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Figure 5. Qualitative results on LM-O [1]. The top shows the matching results. In these, the point on the far left image is the predicted
matched point, the second image from the left shows the ground truth matched point, and the remaining images are reference images, totaling
12. So if the lines between the first and second images on the left are parallel and of equal length, it means the match is correct. For ease of
viewing, we randomly sampled 10 points predicted to be visible. The lower part of each result set displays the estimated results. The far-left
image is an RGB image, the middle image shows the projection of the ground truth pose (in green) and the estimated pose (in red). The
image on the far right displays the error heatmap calculated between the ground truth pose and the predicted pose which darker red indicates
higher error with respect to the ground truth pose (legend: 0 cm 5 cm).
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