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Supplementary Material

A. Dataset Preparation
The original data are from open source 3D datasets [1, 2].
As they only provide triangulated meshes, we get the wire-
frame metadata from the model original sources. Then we
merge pairs of triangle faces to form polygon meshes and
keep samples with quad faces comprising more than 90%
of total faces. This results in around 200k polygon meshes.
We then expand the dataset with splitting components and
keep mesh components containing more than 10% of the to-
tal face count. In this way, we expand the initial dataset to a
size of 400k.

To improve the quality of the dataset, we apply several
filters to remove those that are potentially not plausible for
predicting frame fields. We consider three indicators on all
meshes: the total surface area, the number of faces, and the
number of vertices, and remove meshes where one of those
indicators lies outside the range of [5%,95%] percentiles.
This filtering removes, for example, many quadrangulated
scanned objects and oversimplified meshes. Then, we ex-
clude models that do not have a high proportion of vertices
of degree 4 as we find that there exist some “fake” quad
meshes simply created by subdividing a triangular mesh.
Finally we get around 270k meshes.

B. Frame Field Calculation
The ground truth frame fields [6] are calculated similarly
to Dielen et al. [3]. For each sample point p, we locate
the quad face that contains p and interpolate the vectors
of the opposite edges by the distance of p to both edges
to calculate one of the representative vectors. Formally, as
shown in Fig. 1, the frame is u = s2
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We sample 10,000 meshes and calculate the frames on

40,000 sampled points per mesh and show the statistics in
Fig. 2. For each mesh, we divide the frames by the av-
erage of the cross product of the two components of each
frame, which corresponds to the average face area of the
target quad mesh, to exclude the global scale. The resulting
magnitudes are close to a log-normal distribution. Since
data with Gaussian-like distributions are preferable for dif-
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Figure 1. The elements of frame field calculation. The frame
at each point is determined by the located quadrilateral face. The
representative vectors are calculated as a weighted summation of
the directed opposite sides.

fusion model training, we use the logarithmic magnitude as
the denoising target. During inference, we recover the orig-
inal scale via exponentiation.

Figure 2. The distribution of frame magnitudes from sampled
10,000 meshes.

C. Network Details
We make several modifications to the original PTv3 [7] net-
work to make it suitable for our tasks. We add a linear layer
as a residual path across the voxelization operator to make
points in the same voxel distinguishable between each other.

In Tab. 1, we list the specific model configurations of
our direction regression network and magnitude diffusion

1



network, which both use PTv3 [7] as the backbone. Be-
sides the backbone configuration, in the magnitude diffu-
sion model, we also have the attention-based encoder and
decoder. Both the encoder and decoder consist of 2 self at-
tention blocks. For the magnitude diffusion network, we
remove the randomness, i.e. dropout and random shuffle
orders, to improve consistency at each timesteps. We found
this modification improves the performance for the diffu-
sion process.

Both our direction regression network and magnitude
denoising networks are trained on the dataset described
above. For direction regression, we use AdamW [5] op-
timizer with a batch size of 288 meshes and schedule the
learning rate as a cosine decay following a linear warm-up
with lrmax = 5 × 10−4. For the magnitude diffusion net-
work, we use AdamW [5] optimizer with a batch size of 96
meshes and schedule the learning rate as a constant value
of 10−4. We use the cosine scheduler for αt and rescale
it to achieve zero SNR [4] at t = T . We augment each
mesh with random shifts and random rotations around the
gravity axis and then uniformly sample a point cloud of
50, 000 ∼ 60, 000 surface points as training data to capture
geometry details as much as possible.

D. More Results
We show more results in Figs. 3 and 4. To explicitly demon-
strate the ability to process non-manifold inputs, Fig. 5
shows a remeshed result from a non-manifold ShapeNet ob-
ject.
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Network Config Value

Direction Regression

serialization pattern Z + TZ + H + TH
shuffle orders True
encoder depth [2, 2, 2, 6, 2]

encoder channels [64, 64, 128, 256, 512]
encoder num heads [4, 4, 8, 16, 32]
encoder patch size [1024, 1024, 1024, 1024, 1024]

decoder depth [2, 2, 2, 2]
decoder channels [64, 64, 128, 256]

decoder num heads [4, 4, 8, 16]
decoder patch size [1024, 1024, 1024, 1024]

down stride [× 2, × 2, × 2, × 2]
mlp ratio 4
qkv bias True
drop path 0.3

Magnitude Diffusion

serialization pattern Z + TZ + H + TH
shuffle orders False
encoder depth [2, 2, 2, 6, 2]

encoder channels [128, 128, 128, 256, 512]
encoder num heads [8, 8, 8, 16, 32]
encoder patch size [1024, 1024, 1024, 1024, 1024]

decoder depth [2, 2, 2, 2]
decoder channels [64, 64, 128, 256]

decoder num heads [4, 4, 8, 16]
decoder patch size [1024, 1024, 1024, 1024]

down stride [× 2, × 2, × 2, × 2]
mlp ratio 4
qkv bias True
drop path 0.0

encoder channels 128
encoder num attention layers 2

encoder num heads 8
decoder channels 64

decoder num attention layers 2
decoder num heads 4

timestep embedding channels 512

Table 1. Model Configurations. For the serialization pattern, Z is Z-order, TZ is Trans Z-order, H is Hilbert, TH is Trans Hilbert.
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Figure 3. More qualitative comparison results with other mesh quadrangulation methods.
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Figure 4. More qualitative comparisons on diverse mesh sources. (left: Thingi10k, right: 3D generation tools).

Figure 5. Non-manifold mesh input and the remeshed version. Non-manifold edges and their adjacent faces in the input are highlighted in
red.
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