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S1. Derivation
S1.1. Derivation of Eq.(10)
According to the transition distribution of Eq.(9), the relationship between xt and x0 can be expressed as:
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Ld

q
∆I + Id) + βtn+ kγtϵ, (S1)

where ϵ ∼ N (0, I). By recursively applying Eq. (S1), we can obtain the relationship between xt and x0 as follows:
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S1.2. Derivation of Eq.(12) and Eq.(13)
According to the Bayes’s theorem, we have:

q(xt−1|xt, x0, y) ∝ q(xt|xt−1, y)q(xt−1|x0, y), (S3)

where q(xt|xt−1, y) = N (xt;At−1xt−1+αt−1(
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q ∆I+Id)+βt−1n, k
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q(xt−1|x0, y) ∝exp{−
[xt −Atxt−1 − αt(

Ld

q ∆I + Id)− βtn]
2

2k2γ2
t

−

[xt−1 −At−1x0 − αt−1(
Ld

q ∆I + Id)− βt−1n]
2

2k2γt−1
2 }

=exp{−1

2
(
A2

tγt−1
2 + γ2

t

k2γ2
t γt−1

2 )x2
t−1 + [

Atxt −Atβtn−Atαt(
Ld

q ∆I + Id)

k2γ2
t

+

At−1x0 + βt−1n+ αt−1(
Ld

q ∆I + Id)

k2γt−1
2 ]xt−1 + const.},

(S4)

where const. denotes the component that is unrelated to xt−1. Then, compare with the expected Gaussian distribution
exp{ (xt−1−µθ(xt,y,t))

2

2σ2
t

+const.}, we can derive µθ(xt, y, t) and σθ(xt, y, t) as represents in Eq.(12) and Eq.(13), respectively.
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S1.3. Derivation of Eq.(14)
The posterior distribution p(x0|y) can be formulated as:

p(x0|y) =
∫

p(xT |y)
T∏

t=1

pθ(xt−1|xt, y)dx1:T
, (S5)

where p(xT |y) = N (xT |y, k2γt2I) represents the starting point of the sampling process, pθ(xt−1|xt, y) defines the reverse
transition from the current state xt to the previous state xt−1 with a learnable parameter θ:

pθ(xt−1|xt, y) = N (xt−1;µθ(xt, y, t),Σθ(xt, y, t)). (S6)

The parameter θ is optimized by minimizing the negative ELBO:

Lθ(xt, y, t) =
∑
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where DKL[·||·] denotes the KL divergence. Based on Eq. (S7), Eq.(14) can be derived as follows:
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S1.4. Derivation of Eq.(18)
Eq.(18) can be derived as follows:
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ηt−1 = ηt −Atηt−1. (S11)

S2. More Explanation
Overall novelty. Overall, our method deeply integrates spike noise modeling into the diffusion model and is the first to do
so specifically for spike image restoration. The closest prior work, RSIR, employs separate network structures for each spike
noise component and uses regression-based training for restoration under general illumination. In contrast, we target the
more challenging low-light conditions and model spike image degradation within the diffusion process, embed unified global
degradation guidance into the network design, thus exploiting the generative power of diffusion models.
End-to-end framework. Fig. S1 shows the end-to-end framework of our method.
Sampling process. Detailed sampling process can be seen in Alg. S1.
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Figure S1. End-to-end framework.

Algorithm S1 Sampling
Input: Spike image y, trained model with parameter θ.
xT ∼ N (xT ; y; k

2γ2
t I)

for t = T, . . . , 1 do
ϵ ∼ N (ϵ; 0, I) if t>1 else ϵ = 0

xt−1 = µ̃θ(xt−1, y, t) +
√
Σ̃θ(xt−1, y, t)ϵ

end for
return x0

l10w41(22%/65%/13%) l1.5w128(12%/74%/14%) GTl1.5w256(1%/23%/76%)l20w41(9%/40%/51%)

l1.5w128 (p3)l1.5w128 (p2) l20w41 (p2) l20w41 (p3)

Sa
m

e 
pa

ra
m

s (
p1

)
w

ith
 d

iff
er

en
t c

on
ds

Sa
m

e 
co

nd
s w

ith
di

ff
er

en
t p

ar
am

s (
p2

/p
3)

Figure S2. Hallucination analysis. ‘l’: light scale. ‘w’: window length. Percentages: the proportion of regions with 0, 1 and ≥2 spike
signals in the spike stream.

S3. More Experimental Results
Hallucination analysis. Fig. S2 shows that our generated results do not exhibit unreasonable hallucinations at the selected
and lighter degradation cases, except in more severe ones (l10w41). The results become closer to the ground truth with
reduced diversity as degradation weakens (l ↑ w ↑), and show reasonable variations under different noise parameters. Our
diffusion prior adapts to spike noise, parameters, and degradation prompts, enabling more faithful restoration.
More qualitative results. More comparison of qualitative results on simulated and real-world datasets are shown in Fig. S3
and Fig. S4, respectively.
More ablation study results. (i) p-value. More ablation studies on p-value are provided in S1. If the p-value is set too
extreme, it may adversely affect performance. (ii) Timesteps t, noise hyperparameter k, and LPIPS loss weight w.
Ablation studies on timesteps t, noise hyperparameter k, and LPIPS loss weight w are provided in S2. Our method requires
only a small number of sampling steps, and the inclusion of LPIPS loss significantly enhances perceived quality.
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Figure S3. More qualitative results on simulated datasets. Cols 2–5 are gamma-corrected for clearer visualization. Zoom in for better
view.
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Figure S4. More qualitative results on real-world datasets. Cols 2–5 are gamma-corrected for clearer visualization. Zoom in for better
view.



Table S1. Ablation study of schedule.

p-value Metrics
p1 p2 p3&p4 PSNR↑ SSIM↑ LPIPS↓
2 27.16 0.7790 0.1542
4 27.19 0.7805 0.1393
6 3 0.005 27.16 0.7807 0.1401
8 26.99 0.7786 0.1378

1 27.05 0.7764 0.1525
2 26.95 0.7776 0.1370

6 3 0.005 27.16 0.7807 0.1363
6 26.68 0.7688 0.1351

0.001 26.84 0.7767 0.1339
6 3 0.005 27.16 0.7807 0.1353

0.01 26.83 0.7767 0.1355
0.02 25.74 0.7685 0.1387

Table S2. Ablation study on timesteps t, noise hyper-parameter k, and LPIPS loss weight w.

hyper-parameter Metrics
t k w PSNR↑ SSIM↑ LPIPS↓
4

0.1 2
26.80 0.7793 0.1491

6 27.16 0.7807 0.1352
8 26.43 0.7795 0.1444

6
0.01

2
26.89 0.7783 0.1335

0.1 27.16 0.7807 0.1352
0.5 26.53 0.7733 0.1368

6 0.1
0 27.13 0.7838 0.1965
2 27.16 0.7807 0.1352
4 26.92 0.7757 0.1299
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