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Figure 1. Comparative analysis of scene division on GALLERY,
CANTEEN and CLASSBUILDING in the OcclusionScene3D
dataset. Notably, CityGaussian’s division is projected onto a con-
tracted space.

Figure 2. Comparative analysis of scene division on ALAMEDA,
BERLIN, LONDON and NYC in the Zip-NeRF dataset. Notably,
CityGaussian’s division is projected onto a contracted space.

1. More Details of the OccluScene3D Dataset
There are three scenes in the OccluScene3D dataset:
GALLERY, CANTEEN and CLASSBUILDING. All the
videos are recorded by a mobile phone with the wide-angle
mode and landscape orientation at a frame rate of 60 Hz.
We use COLMAP [8] to estimate the camera intrinsic and
extrinsic parameters. More details are shown in Tab. 1.

2. Additional Experimental Results
2.1. Additional Quantitative Analysis
Scene division strategy analysis. We present a compar-
ison of scene division on the OccluScene3D dataset and
the Zip-NeRF dataset among VastGaussian [5], CityGaus-
sian [7], Hierarchical-GS [4], DOGS [2], and OccluGaus-
sian in Fig. 1 and Fig. 2. The results demonstrate that

Scene Area (m2) #Video Duration (min) #Image

GALLERY 2500 71 174 9881
CANTEEN 1500 46 111 9034
CLASSBUILDING 1000 18 76 9118

Table 1. Statistics of the OccluScene3D dataset with three real
scenes. Area: covered area; #Video: total number of videos; Du-
ration: total duration of all the videos; #Image: total number of
sampled images for reconstruction.

PSNR Train (m) Mem (GB) #GS (M) FPS

VastGaussian 24.58 49.97 15.0 5.5 232
CityGaussian 20.96 106.35 8.2 6.4 80

Hierarchical-GS 22.94 190.36 30.5 40.0 205
3DGS 20.88 86.8 23.9 0.9 422

OccluGaussian 25.46 48.26 12.2 3.4 313

Table 2. More quantitative results on OccluScene3D dataset.

the scene divisions produced by OccluGaussian better align
with scene layouts. Consequently, OccluGaussian achieves
superior reconstruction quality, which is proven by per-
forming 3DGS optimization with the same hyperparame-
ters across different scene division strategies, as illustrated
in Fig. 3. We also present the division results of Occlu-
Gaussion on the Mill-19 dataset [9] and UrbanScene3D
dataset [6] in Fig. 4, which demonstrate that our method
also generalizes well in aerial capture scenes without occlu-
sions.
Detailed quantitative analysis of OccluGaussian. We
present the average PSNR, training time, allocated memory,
number of gaussians and FPS on OccluScene3D dataset in
Tab. 2. We validate the methods on the Mill-19 [9], Urban-
Scene3D [6] and Zip-NeRF [1] datasets in Tab. 3 and Tab. 4.
It can be observed that OccluGaussian outperforms others
in terms of LPIPS among all the datasets. It also overall
holds a clear advantage over existing methods in other met-
rics, highlighting its generality. These results show the ef-
fectiveness of our scene division strategy, which strength-
ens the correlations among training cameras within each re-
gion, and achieves a higher average contribution to the re-
construction results.
Extended camera ratios. We further compare the ex-
tended camera ratios of division strategy with those from
VastGaussian [5], CityGaussian [7], Hierarchical-GS [4],
DOGS [2] and OccluGaussian, as shown in Tab. 5. This ra-
tio is defined as the total number of extended cameras across
all regions divided by the total number of training cameras.
A smaller ratio of extended cameras indicates that each



Figure 3. Quantitative evaluation of different division strategies applied under the same 3DGS optimization hyperparameters. Lines from
top to bottom are the GALLERY, and CLASSBUILDING scenes from the OccluScene3D dataset, as well as the BERLIN scene from the
Zip-NeRF dataset.

Scene MILL-19 URBANSCENE3D

BUILDING RUBBLE CAMPUS RESIDENCE SCI-ART

Metrics PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

VastGaussian [5] 23.50 0.804 0.130 26.92 0.823 0.132 26.00 0.816 0.151 24.25 0.852 0.124 26.81 0.885 0.121
CityGaussian [7] 22.59 0.757 0.174 25.98 0.784 0.158 - - - 23.25 0.806 0.156 24.49 0.836 0.167
Hierarchical-GS [4] 21.25 0.723 0.297 24.64 0.755 0.284 - - - - - - - - -
3DGS [3] 23.01 0.769 0.164 26.78 0.800 0.161 23.89 0.712 0.289 23.40 0.825 0.142 25.24 0.843 0.166

OccluGaussian [7] 24.77 0.853 0.100 27.16 0.854 0.105 26.60 0.836 0.139 24.24 0.846 0.122 26.42 0.890 0.113

Table 3. Quantitative evaluation of our method compared to previous work on the Mill-19 [9] and UrbanScene3D [6] datasets. The best
and second best results are highlighted. Due to an out-of-memory issue, we were unable to test Hierarchical-GS [22] on the URBAN-
SCENE3D dataset and CityGaussian on the CAMPUS scene.

Figure 4. Scene division results by OccluGaussian on the Mill-19
and UrbanScene3D datasets.

partitioned region is more self-contained and can be well-
reconstructed with fewer training iterations. Conversely,
if region A and B are divided into occlusion-agnostic re-
gions, many extended cameras for region A will be inside
region B, and vice versa. In other words, these two sets of
training cameras are almost the same (all cameras), mak-
ing it difficult to achieve good reconstruction with limited
training iterations. Compared to VastGaussian, CityGaus-
sian, Hierarchical-GS and DOGS, our extended cameras are
greatly reduced by our occlusion-aware division strategy,
which leads to a higher average contribution of all train-
ing cameras for the reconstruction of each region. This ad-
vantage eventually leads to improved reconstruction qual-
ity, as proven by the results obtained when replacing our

Figure 5. Division results of different camera count ranges for
each cluster. The green lines denote the physical walls, and the
red lines denote the boundaries of the divided regions.

scene division strategy with others in our 3DGS optimiza-
tion pipeline, as shown in Tab. 5.

2.2. Additional Ablations
Cluster number refinement. To obtain our final scene di-
vision, we iteratively refine the result from the graph clus-
tering algorithm by splitting or ignoring clusters until the



BERLIN LONDON NYC ALAMEDA

Metrics PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

3DGS [3] 28.52 0.887 0.325 27.05 0.829 0.342 28.21 0.844 0.321 25.35 0.758 0.37
SMERF [? ] 28.52 0.887 0.325 27.05 0.829 0.342 28.21 0.844 0.321 25.35 0.758 0.37
Zip-NeRF [1] 28.59 0.891 0.297 27.06 0.835 0.304 28.42 0.850 0.281 25.41 0.767 0.338

OccluGaussian 30.37 0.937 0.076 28.06 0.868 0.141 31.33 0.902 0.121 24.75 0.814 0.201

Table 4. Quantitative evaluation of our method compared to previous work on the Zip-NeRF [1] datasets.

PSNR Base cam. Extended cam. Ratio

VastGaussian [5] 24.58 9119 8921 97.8%
CityGaussian [7] 22.50 9119 5371 58.90%
Hierarchical-GS [4] 23.93 9119 6808 74.66%
DOGS [2] 25.11 9119 8331 91.36%

OccluGaussian 25.81 9119 4232 46.41%

Table 5. Extended camera comparison on OccluScene3D.

#Clusters Metrics

Initial K Final K PSNR SSIM LPIPS

Fixed cluster number 10 10 28.092 0.870 0.141
Mc ± 0.3Mc 10 8 28.090 0.870 0.141
Mc ± 0.5Mc 10 7 28.060 0.868 0.141
Mc ± 0.7Mc 10 6 28.043 0.862 0.142

Table 6. Quantitative results of different camera count ranges.

Figure 6. Ablation study of features in our attributed scene graph.

camera count in each cluster falls within [Mc−σcMc,Mc+
σcMc], where Mc is the average camera count across all
clusters. Here we explore the influence with different σc

choices, as shown in Fig. 5 and Tab. 6. The division results
remain occlusion-aware, and similar performances are ob-
tained. Note that without this refinement step, comparable
reconstruction quality can still be achieved; however, more
GPU resources are required as more regions need to be re-
constructed.
Features in the scene graph. As shown in Fig. 6, both
the position features in the node attribute and the visibility
correlations encoded by the edge weight in the scene graph
are important to achieve occlusion-aware division.
Region-based rendering. The ablation study of our region-
based rendering is conducted on the OccluScene3D dataset,
and the visual comparisons are shown in Fig. 7. Our
region-based culling strategy substantially enhances render-

Figure 7. Quantitative evaluation of region-based rendering. The
right-most image uses color coding to represent pixel differences:
red for |A−B| > 1, blue for |A−B| = 1, and gray for A-
B = 0. The difference between A and B is almost less than 1
pixel. Our approach achieves substantial enhancements in render-
ing speed without a perceptible loss in image quality.

a) w/o border set b) w/ border set

Figure 8. Ablation study of border set in training camera selection.

Study Room Meeting Room Classbuilding CClassbuilding B Parking LotHall

Figure 9. Scene division on the OcclusionScene3D-E dataset.

ing speeds without any perceptible loss in visual quality.
Moreover, the proposed region subdivision technique fur-
ther accelerates rendering.
Training camera selection.The ablation study of border set
in training camera selection is shown in Fig. 8. Without
the border set, Gaussian primitives can become excessively
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Figure 10. Quantitative Evaluation on the OcclusionScene3D-E Dataset. The first line shows the ground truth, while the second line
presents the rendering results of our OccluGaussian method.

Scene Area (m2) #Video Duration (min) #Image

STUDY ROOM 500 39 105 4752
HALL 800 33 97 6000
MEETING ROOM 1500 36 127 10000
CLASSBUILDING B 1000 27 63 7603
CLASSBUILDING C 1000 25 76 6435
PARKING LOT 500 38 78 6060

Table 7. Statistics of the OccluScene3D-E dataset with six real
scenes.

Scene PSNR SSIM LPIPS #GS (M) FPS

STUDY ROOM 22.52 0.84 0.190 2.6 314.73
HALL 22.70 0.79 0.212 1.7 341.76
MEETING ROOM 27.00 0.90 0.12 3.5 407.51
CLASSBUILDING B 22.24 0.85 0.158 1.8 595.38
CLASSBUILDING C 23.90 0.88 0.123 1.4 420.94
PARKING LOT 22.46 0.86 0.146 1.6 314.73

Table 8. Quantitative results on the OccluScene3D-E dataset.

large or elongated, leading to floaters or artifacts.

3. Extended Dataset
To further advance research in occluded scene recon-
struction, we introduce an extended version of the Oc-
cluScene3D dataset named OccluScene3D-E. It encom-
passes six diverse scenes: STUDY ROOM, HALL, MEET-
ING ROOM, CLASSBUILDING B, CLASSBUILDING C,
and PARKING LOT, with detailed information in Tab. 7.
As demonstrated in Fig. 9, applying OccluGaussian’s
scene division method to OccluScene3D-E yields results
that closely align with the underlying scene structures.
Tab. 8 details the quantitative metrics, including PSNR,
SSIM, LPIPS, the number of gaussians, and FPS for
OccluScene3D-E. The rendering outcomes for each scene,
illustrated in Fig. 10, collectively confirm the robustness
and effectiveness of our scene division strategy, as well as
its capacity to produce high-fidelity visual results.

Initial K Final K PSNR SSIM LPIPS

1 1 25.18 0.882 0.145
5 5 25.35 0.895 0.114
7 7 25.59 0.902 0.103

10 7 25.81 0.903 0.099
15 10 25.33 0.899 0.101

Table 9. Different initial clustering numbers K on the Gallery
scene of OccluScene3D dataset.
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