Appendix
A. Network Architecture

In this paper, we propose PatchScaler, an efficient patch-
independent diffusion model for the SISR task. The over-
all architecture of PatchScaler is illustrated in Fig. 2 of
the main paper. To alleviate the computational overhead
for high-resolution images, our PatchScaler performs re-
construction in the latent space of a pre-trained variational
autoencoder [41], following the previous diffusion mod-
els [7, 41, 48]. To achieve adaptive reconstruction of differ-
ent regions of the image, we introduce a Global Restoration
Module (GRM) and a Patch-DiT for PatchScaler. Here, we
present the detailed architecture of them.

A.1. Global Restoration Module

To remove the degradations (e.g., noise or distortion arti-
facts) and capture long-range dependencies, we introduce a
Global Restoration Module (GRM) based on a UNet-like ar-
chitecture, as shown in Fig. 9(a). Specifically, GRM consists
of a series of residual blocks and downsampling convolu-
tions followed by a stack of residual blocks with upsampling
convolutions and skip connections. Unlike traditional im-
age restoration networks, our GRM has two output branches
to generate the confidence map C' and the coarse HR fea-
ture ypr, respectively. C' predicts the distance between
the coarse HR yyr and ground truth xR, and @map is
obtained by quantifing C.
The supervision of the confidence map C' is:

L(0) := [lynr — @ur]l; +A(C [lysr — ur |3 —nlog(C)),

(®)
where \ and 7) are the weights of the losses, and log(C') rep-
resents the logarithm of C'. When the regions of coarse HR
are far from the ground truth, the term C ||y — wHRHg is
dominant, encouraging C' to decrease. Conversely, the term
—log(C) becomes dominant, encouraging C' to approach 1.
We emphasize that this constraint has been demonstrated to
be effective in the low-level tasks [8, 32, 54]. In this way,
the generated C' can accurately reflect the reconstruction
difficulty of the image.

A.2. Patch-DiT

Since most popular open-source diffusion models [35, 41,
42] produce inferior results in low-resolution patches [69],
we propose a Patch-wise Diffusion Transformer, i.e., Patch-
DiT, as the backbone of PatchScaler to reconstruct the fine
textures from the coarse HR patches. The overall architecture
of Patch-DiT is illustrated in Fig. 9(b). We build our Patch-
DiT upon DiTs [37] and explore the following architectural
modifications: (1) concatenating yo with the noisy latent
y, as the input of Patch-DiT to generate content-consistent
results; (2) adding a cross-attention layer in each base block

Methods Prompt | ManlQA CLIPIQA MUSIQ | Runtime (s)
SUPIR [61] text 0.5141 0.8122 68.77 113.82
PatchScaler | texture 0.5442 0.8213 70.97 341

Table 8. Quantitative comparison of SUPIR (w/ text prompt) and
PatchScaler (w/ texture prompt) on RealSet110 dataset. The best
results are highlighted. Noted that the runtime is measured on the
x4 (512 —2048) SR task using an NVIDIA Tesla A100 GPU.

to incorporate the texture prompt; (3) removing the class
label embedding and learnable covariance.

To optimize the patch-level reconstruction process of
Patch-DiT, we further propose the texture prompt. First,
we introduce a texture classifier to learn high-dimensional
semantic representations of texture feature patches offline
and achieve texture retrieval for the target patches from
RTM. The texture classifier is trained for 100K iterations
based on Describable Textures Dataset (DTD) [9]. Sec-
ond, to transfer the retrieved texture priors into Patch-DiT,
we propose a similarity-aware texture encoder, as shown
in Fig. 9(b). We copy the first half of the Patch-DiT and
trim it as the similarity-aware texture encoder. The structure
of the similarity-based texture encoder is much lighter and
replaces time embeddings with similarity embeddings. As
the encoder is time-step independent, it does not need to
be recomputed at each iteration, significantly speeding up
inference. To account for time, we introduce dimension-
wise scaling parameters based on time embedding in each
cross-attention layer.

During the training, we optimize the reweighted varia-
tional lower bound at the patch level:

L(0) = Eagic lle = fo (ze.t.wo.t")] ©

where x; is sampled as ©; = \/a;xg + /(1 — &y)€, oy ==
1— B, oy = HE:O a;, € ~ N(0,I), g is the patch from
the ground truth iR, Yo is the coarse HR patch, tp"* denote
the retrieved texture priors, and s* denote the corresponding
top-K similarities.

B. Compare with MLL.M-based SR Method

PatchScaler is designed to dynamically accelerate inference
by analyzing reconstruction difficulty and handling different
image regions discriminatively. In the experiments presented
in the main paper, PatchScaler demonstrates superior perfor-
mance over existing multi-step and one-step diffusion-based
super-resolution (SR) methods in both quantitative and qual-
itative evaluations. Furthermore, we note the emergence
of MLLM-based SR methods, such as SUPIR [61], which
exhibit powerful generative capabilities through the intro-
duction of dense captions. SUPIR leverages a 2.6-billion-
parameter StableDiffusion-XL (SDXL) [38] as its generative
prior and a 13-billion-parameter Multi-modal Large Lan-
guage Model (MLLM) to generate detailed descriptive text.

=
g |
= = Coarse HR
@ @ g 2 feature
=} —_ —_
= Bel | = o | = 3 o N S = o | = 3 s S
=12 | o |F= 2 S |2 S | o |RENNEl 2 Z
LR feature = HEH SIH =) CRH m 3 s SPH /a
zls| = g | g e 5 P& 2| T = =
oIl < |F8 ~ b8 -4 v | =l | = = | =) ~ S = B
o A A 5 =1 3 .
= = g Confidence
= = &0
o maj
g = B2 P
O O
1
1
1
=}
: gl 8
1 = =
' A S
1
I 4
\N
(a) The architecture of Global Restoration Module (GRM)
il e il ~
! Similarity-Aware Texture Encoder Y
1
1
1
1
1
1
1
Texture i
1 1
prior '
1
1
1
1
1
1
Top-K N &
e — 1y 8=
similarities 0 =
1
1
AY
v A 4 A4
- 5 o e ©
< = < \ \
E 5z g E E
(%, Y1) m 2r N —> « « « —> [Fll—> [F=i|—>| Noise
2 o T 2 By Q
< o) < 2 3
) %) = M M
Time >

(b) The architecture of Patch-DiT

Figure 9. Overview of the proposed PatchScaler. (a) The architecture of Global Restoration Module; (b) The architecture of Patch-DiT.

Although SUPIR has achieved outstanding performance,
it often generates details that are not faithful to the LR im-
ages. We present four representative examples in Fig. 10,
following the default hyperparameter settings of SUPIR. It
can be observed that SUPIR produces wrinkles on the human
face that do not match the original age attributes of the per-
son. The structure of the landmark building is altered, and
the content and meaning of the LOGO is also manipulated,
significantly reducing the recognition of these images. In
addition, SUPIR also generates unexpected animal fur in
the illustration image. We analyze that this issue is due to
excessive guidance from text prompts and the misalignment
between images and text prompts in diffusion models. In

contrast, PatchScaler, leveraging its texture prompt, produces
results with higher visual quality and objective consistency.
Overall, our method is more suitable for restoring the user’s
significant images that are faithful to the LR inputs.

We further perform a quantitative evaluation on the Re-
alSet110 dataset, as shown in Tab. 8. Thanks to the pro-
posed patch-independent diffusion pipeline that integrates
Patch-adaptive Group Sampling (PGS) and texture prompt,
our PatchScaler consistently outperforms SUPIR on all non-
reference metrics. In addition, due to the large number of
model parameters, SUPIR exhibits significantly slower infer-
ence speed, taking more than 30x longer than PatchScaler.
This limits its applicability to a few creative scenarios that

x Unfaithful to

Faithful to
the LR image «

the LR image

F1-Human face

SUPIR
(w/ Text Prompt)

PatchScaler
(w/ Texture Prompt)

LR image

Unfaithful to
the LR image

Faithful to
the LR image

SUPIR

Figure 10. Comparison between SUPIR (w/ text prompt) and PatchScaler (w/ texture prompt).

M Hard: 0.00~0.75 M Medium: 0.75~0.85 M Hard: 0.95~1.00

251

22.

Figure 11. Distribu-
tion statistics of the

%)
S

S ” number of patches of
E, st N . E patches with differ-
% REEr ent confidence inter-
g0 im vals. Note that the
A 5 statistics are based
i 28 on the RealSetl10
282 - dataset.
0.0 0.2 0.4 0.6 0.8 1.0

are not sensitive to inference speed and consistency. Un-
like SUPIR, our PatchScaler dynamically accelerates the
inference process, significantly improving computational ef-
ficiency without compromising reconstruction consistency,
which is of broad practical value in real-world applications.

C. More Quantitative Analysis

C.1. Distribution Visualization

In this work, we classify the patches into different groups
based on the quantified confidence map @Qmap. To analyze
the distribution of patches within different confidence inter-
vals, we count the number of patches in each interval on
the RealSet110 dataset, as shown in Fig. 11. We conduct
ablation studies under different confidence thresholds in Sec.
4.3.1 of the main paper, and PatchScaler achieves a trade-off
between model performance and runtime with v;=0.95 and
’}/2=0.75.

C.2. Divide Qmap into Different Number Groups

We provide an intuitive experiment analysis (metrics against
runtime) of PatchScaler under different numbers of groups

. PatchScaler
LR image
g (w/ Text Prompt) (w/ Texture Prompt)
The number of group
R~]
80.82 -7 ~o._ o 38
= ~. .- -
E o> E O’/ e O
D 081 : ‘//,,o 136 2
> 1 Plog o
: - - A ManIQA g
80'56 /U & CLIPIQA 14 E
= A— ./_.{_. AL O Runtime ~
< . =
=053t o Al ~— A P2
. ; . i .
2 3 4 5 6

Figure 12. Performance of different numbers of groups.

(ranging from 2 to 6) on the RealSet110 dataset in Fig. 12.
Our method achieves a balance between quality and effi-
ciency when dividing the Qmap into three groups. Increasing
the number of groups not only fails to enhance performance,
as it introduces more randomness into the model, but also
increases inference complexity. Note that the runtimes are
evaluated using an NVIDIA Tesla A100 GPU.

C.3. Runtime and Memory Usage

The GRM in PatchScaler is responsible for generating a
coarse HR feature, while the Patch-DiT refines it at the patch
level. As shown in Tab. 9, we report the runtime and memory
usage of each component. Note that they are evaluated on the
512—2048 task and memory usage records the peak value
during execution.

Modules Autoencoder GRM Patch-DiT
Runtime (s) 1.04 0.01 2.36
Memory usage (G) 9.45 5.52 5.66

Table 9. Analysis of runtime and memory usage of each component
of PatchScaler.

(b) Real-ESRGAN (c¢) SwinlR-GAN (d) LDM (e) StableSR (f) ResShift
(g) PASD (h) DiffBIR (1) SinSR (j) OSEDiff (k) Ours
. .
(b) Real-ESRGAN (c¢) SwinlR-GAN (d) LDM (e) StableSR (f) ResShift
(g) PASD (h) DiffBIR (i) SinSR (j) OSEDiff (k) Ours
s
(d) LDM (e) StableSR) ResShift

(a) LR image

(i) SinSR (j) OSEDiff (k) Ours

et S TR T

Real04-building i
3 R

\
*
L)

(a) LR image (2) PASD (h) DiffBIR (i) SinSR (j) OSEDiff (k) Ours

Figure 13. More visual comparison between PatchScaler and state-of-the-art SR methods on real-world low-resolution images.

Methods RealSR RealSet110 Runtime(s)
ManlQA CLIPIQA MUSIQ ManlQA CLIPIQA MUSIQ (#Params)
S3Diff-s1* 0.4593 0.5835 67.82 0.4802 0.8115 70.95 15.92 (1327M)
AddSR-s1 0.5105 0.5479 71.34 0.5310 0.8096 71.19 37.65 2511M)
TAD-SR-s1* 0.4589 0.5828 65.83 0.4466 0.6786 57.24 OOM (119M)
AdcSR-s1* 0.5175 0.5628 69.87 0.4742 0.7925 70.28 3.80 (456M)
InvSR-s1 0.4573 0.5670 68.55 0.4589 0.7931 70.03 4.96 (1290M)
Ours 0.5225 0.5839 69.50 0.5442 0.8213 70.97 3.41 (875M)

Table 10. More comparisons with latest distillation-based (*) and one-step (s1) SR models. Runtime is measured for upscaling images to a
resolution of 2048 x2048. Existing one-step methods suffer from limited flexibility and inefficiency on high-resolution inputs, while our
method achieves significant efficiency gains with competitive reconstruction quality.

LR image StableSR StableSR+PGS

Figure 14. Comparison between StableSR and StableSR+PGS.

Methods StableSR [48] OSEDiff [53] Ours
GFLOPs 6412 2161 5190
#Param (M) 1409 1776 875

Table 11. Analysis of FLOPs and parameters with state-of-the-art
SR methods.

C.4. FLOPs and Parameters

To assess the efficiency of PatchScaler, we compare its run-
time against other methods in Tab. 2 of the main paper. As
shown in Tab. 11, we further report the FLOPs and parame-
ters with two typical diffusion-based methods, as a reference.
It can be seen that our method has significantly fewer param-
eters than the other two methods, and its FLOPs is second
only to OSEDiff [53].

D. More Results
D.1. More Visual Comparisons with SOTA Methods

As shown in Fig. 13, we present more visual evaluation
results of the proposed PatchScaler with state-of-the-art SR
methods on real-world LR images. These results consistently
demonstrate the superiority of PatchScaler in both artifact
removal and texture detail enhancement.

w/ texture prompt

LR image

w/ text prompt

Figure 15. Visual comparisons of different prompts.

D.2. Comparison with More One-Step SR Methods

We compare PatchScaler with more one-step SR models (in-
cluding distillation-based methods) in Tab. 10, demonstrat-
ing its efficiency and quality benefits from adaptive sampling
and texture prompt.

D.3. Extension of PGS

To verify the extension of the proposed Patch-adaptive Group
Sampling (PGS), we applied the proposed PGS and GRM
to StableSR [48] in a trainable-free manner. We present
more visual comparisons in Fig. 14. It can be seen that
our method can be seamlessly applied to other baselines,
yielding substantial improvements in reconstruction quality.

D.4. Text Prompt vs. Texture Prompt

As shown in Fig. 15, we provide more visual comparisons of
different prompt. It can be seen that the model with texture
prompt can generate clearer detailed information. This is due
to the challenging misalignment [7] between the text content
and image content in the SISR task, which often leads to
degraded performance. On the other hand, the proposed
texture prompt effectively assists the reconstruction process
by providing high-quality texture references that are similar
to the target patch.

	Network Architecture
	Global Restoration Module
	Patch-DiT

	Compare with MLLM-based SR Method
	More Quantitative Analysis
	Distribution Visualization
	Divide Qmap into Different Number Groups
	Runtime and Memory Usage
	FLOPs and Parameters

	More Results
	More Visual Comparisons with SOTA Methods
	Comparison with More One-Step SR Methods
	Extension of PGS
	Text Prompt vs. Texture Prompt

